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Abstract

This paper uncovers a novel mechanism through which market structure shapes expected
productivity growth. I develop a multi-sector model in which granular firms are subject to
random productivity shocks, and I characterize the resulting stochastic dynamics of firms,
sectors, and aggregates. I test the model’s predictions using firm-level data from Sweden,
complemented by industry data from the United States and other European economies. In
efficient industries, the model predicts and the data confirm that higher sales concentration
lowers expected productivity growth by limiting reallocation: a 10-percentage-point increase in
the Herfindahl index of sales concentration predicts roughly a 3-percentage-point decline in
five-year productivity growth. In line with the model’s predictions for distorted economies, a
similar increase in the gap between the Herfindahl indices of sales and cost shares is associated
with a stronger decline of about 13 percentage points. The quantified version of the model
generates substantial and persistent cross-sectional heterogeneity in growth across firms and
aggregates, in line with the empirical evidence. I conclude that micro-reallocation is key
to understanding how market structure shapes productivity growth across industries and,
potentially, larger aggregates such as countries.
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1 Introduction

A substantial share of productivity growth arises from reallocating resources to firms that use

them most effectively. Baqaee and Farhi (2020) estimate that within-industry gains in allocative

efficiency—resources shifting to more productive firms—account for about half of aggregate TFP

growth in the U.S. over the period 1997–2015. Anecdotes abound: when the iPhone outperformed

rivals, sales and labor in the smartphone industry shifted to Apple. More recently, the chip

industry has thrived despite Intel’s setbacks, as resources have moved to new leaders like Nvidia.1

These examples illustrate growth through reallocation: as productivity differences emerge,

resources move from less to more efficient producers. Yet when technological gaps widen, leading

firms become dominant within their industries. There is then little market share to gain from

further productivity improvements, and no close competitors left to step in if the leader falters.

This raises a key question: Does the reallocation mechanism remain effective once industries

become highly concentrated, as observed in many modern economies?

This paper answers this question using an exogenous growth model featuring two key

ingredients: (i) firms are granular—large enough to influence aggregate outcomes and potentially

dominate their industries—and (ii) firm productivity follows a random growth process. Using

continuous-time tools, I derive expected productivity growth at the sectoral and aggregate levels,

both in efficient and distorted economies, conditional on the current market structure. The main

finding is that when production is concentrated in a few large firms, idiosyncratic shocks, in

expectation, generate smaller reallocation gains, an effect I term the granular drag on growth. With

thin-tailed shocks, the Herfindahl index of concentration for sales- and cost-based firm shares

is a sufficient statistic for the role of granularity in shaping expected productivity growth. I test

these mechanisms empirically, using firm-level data from Sweden, complemented by industry data

from the United States and a broad set of European countries. The results confirm the presence of

granular effects on productivity growth consistent with the theory.

Many models of growth and firm dynamics acknowledge the fact that firm size distributions

are highly skewed, and imply a firm size distribution with a Pareto tail. However, for tractability,

they often rely on a continuum of infinitesimal firms, thus abstracting from the finite nature of

1In 2013, Apple held a recruiting event about 15 minutes from BlackBerry’s headquarters, shortly after the company
announced layoffs affecting roughly 40 percent of its workforce, and invited engineers to relocate to Cupertino to
“join the world’s most advanced mobile devices and operating systems.” Intel’s recent 15 percent workforce reduction
contrasts with Nvidia’s rapid expansion amid the AI boom. Sources: Paczkowski (2013); Iyengar and Kolodny (2025).
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granular firms.2 I relax this assumption and develop a model with a finite number of sectors,

each populated by a finite number of firms. To capture the key mechanisms, the model features a

nested CES structure. Within sectors, goods are gross substitutes with an elasticity of substitution

greater than one, whereas sectoral output exhibits unit elasticity, reflecting higher competition

within than across sectors. Firms experience random, idiosyncratic productivity shocks, leading to

a firm size distribution with a Pareto upper tail, consistent with empirical evidence (Axtell, 2001).

The combination of a heavy-tailed firm size distribution and a finite number of firms generates

granularity, with a few large firms accounting for a disproportionate share of sectoral production.

The main theoretical contribution is to characterize expected sectoral productivity growth

as a function of the distribution of firm sales and cost shares. Using continuous-time tools, I

demonstrate that under gross substitutability, sectoral log growth in productivity exceeds the

average log growth in firm productivity. The positive residual captures the gains from reallocating

production toward firms with positive shocks and away from those with negative shocks. With a

continuum of infinitesimal firms, this reallocation term is maximized: for every "unlucky" firm,

there is a similarly sized "lucky" firm to reallocate to. In the extreme case of a monopolist, there is

no reallocation at all.

With a finite number of firms, however, granularity shapes how effectively resources can be

reallocated in response to idiosyncratic shocks. In an efficient allocation, concentration hampers

reallocation. For instance, positive shocks to small firms might not offset a negative shock to a large

firm, or vice versa. In expectation, concentration drags down future productivity growth. With

distortions, the effect depends on the joint distribution of sales and cost shares. If more productive

firms also have lower cost shares, then distortions amplify the concentration drag because resources

are misallocated away from the most productive firms. Conversely, if more productive firms have

higher cost shares, distortions can mitigate the concentration drag by reallocating resources toward

more productive firms. These sectoral effects naturally propagate to the aggregate economy: when

more sectors become concentrated, aggregate productivity growth slows as reallocation becomes

less effective at the economy-wide level.

Granularity also shapes individual firm growth. Because the elasticity of substitution across

sectors is lower than the elasticity within sectors, as a firm grows large within its sector, it saturates

the market and has less room to grow. Consequently, its growth rate distribution becomes left-

2The term granular describes an irregular, discrete distribution, in contrast to the "smoothness" of a continuum of
infinitesimal agents. In the latter case, no single unit represents a sizable share of aggregates.
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skewed and less volatile. In contrast, its smaller rivals face more business-stealing opportunities,

so their growth rate distribution becomes right-skewed, yet more volatile with the size of the

large firm. Even with identical random growth shocks, granularity shapes how the firm growth

distribution varies with size, generating size-dependent volatility and skewness profiles for firm

growth.

I test the model’s predictions using firm- and industry-level data. The theory implies two

empirical relationships. First, in an efficiently allocated economy, higher concentration should be

followed by slower productivity growth, as reallocation becomes less effective when a few firms

dominate production. Second, when resource allocation is distorted, for example when the largest

firms charge higher markups than others, differences between sales- and cost-based concentration

should further magnify this slowdown. I evaluate these predictions using administrative firm-

level data from Sweden. Across industries, a 10-percentage-point rise in the Herfindahl index of

sales concentration is associated with about a 3-percentage-point decline in five-year productivity

growth, and a similar increase in the gap between the Herfindahl indices of sales and costs predicts

a decline of roughly 13 percentage points, highlighting the role of misallocation in magnifying the

granular drag. I further corroborate these findings using industry-level data from the United States

and a broad set of European countries. Across datasets, industries that become more concentrated,

or display greater differences between sales- and cost-based concentration, experience significantly

lower future productivity growth, consistent with the granular drag mechanism predicted by the

model.

Finally, I quantify the model using the simulated method of moments. The parameters of

the productivity process are disciplined by cross-sectional moments of firm growth that capture

volatility, skewness, and kurtosis in the unconditional distribution. The model reproduces the

observed size-dependence of volatility and skewness, even though these moments are not explicitly

targeted. Because sectors contain a finite number of firms, the model naturally generates a

realistic dispersion in concentration levels across sectors. An increase in concentration leads to

contemporaneous rise in productivity, followed by a prolonged slowdown in growth. These effects

propagate to the aggregate economy and remain economically significant over extended time

horizons, highlighting the importance of micro-reallocation effects for understanding productivity

growth at medium and long-term horizons.
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Related Literature This paper is related to the literature on the propagation of microeconomic

shocks to aggregate outcomes. Propagation requires discreteness: in a continuum of infinitesimal

agents, idiosyncratic shocks average out and have no aggregate effect. In the presence of a large

but discrete number of agents, propagation further requires a heavy-tailed size distribution, such

that a few large agents carry sufficient weight to affect aggregates. Gabaix (2011) introduces this

idea as the granular hypothesis, showing that, given the empirically observed firm size distribution,

idiosyncratic shocks to large firms can generate aggregate fluctuations of significant magnitude.

Subsequent work extends this idea to trade (di Giovanni et al., 2014, 2024; Gaubert and Itskhoki,

2021), propagation through input-output linkages (Acemoglu et al., 2012; Carvalho and Gabaix,

2013; Grassi, 2018), firm dynamics and aggregate volatility (Carvalho and Grassi, 2019), and

markup fluctuations (Burstein et al., 2025).

Within the class of granular firm dynamics models, the closest papers to mine are Carvalho

and Grassi (2019); Gaubert and Itskhoki (2021) and Burstein et al. (2025). Carvalho and Grassi

(2019) study how granular firm dynamics generate endogenously aggregate persistence and

volatility. In a similar model to mine, Burstein et al. (2025) study the co-movement of markups

and output at different levels of aggregations. My paper differs from these contributions by

focusing on how granularity shapes expected productivity growth rather than short-term fluctuations.

Similarly, Gaubert and Itskhoki (2021) study how firm granularity predicts reversals in comparative

advantage and trade flows, but do not study productivity growth.

A closely related line of research studies more broadly the aggregation and propagation of

microeconomic shocks in general equilibrium. Building on Hulten (1978), Baqaee and Farhi (2019)

and Baqaee and Farhi (2020) develop frameworks to trace how micro-level shocks both in efficient

and distorted economies aggregate.3 This paper is related in that it also studies how idiosyncratic

shocks aggregate to shape aggregate outcomes. However, while these papers focus on how realized

shocks propagate, I take the probability distribution of shocks as given and study how market

structure shapes expected productivity growth.

Recent macroeconomic trends have spurred research on market concentration and productivity

growth. Several studies report rising market concentration and markups in the US and other

developed countries (Autor et al., 2020; De Loecker et al., 2020; Kwon et al., 2024; Ma et al., 2025).

Second, productivity growth has been lackluster, with a burst in the late 1990s that coincided with

an increase in concentration, followed by a prolonged slowdown (Aghion et al., 2023). Building on

3See Baqaee and Rubbo (2023) for a comprehensive review of this framework.
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the seminal contribution by Aghion and Howitt (1992), several studies have linked this increase in

concentration to the fall in productivity growth through reduced innovation incentives (Aghion

et al., 2005; Olmstead-Rumsey, 2019; Aghion et al., 2023; Akcigit and Ates, 2023; Ridder, 2024;

Cavenaile et al., 2025). For example, in Aghion et al. (2023) and Ridder (2024), an increase in

concentration is contemporaneously associated with a burst in productivity growth, followed by

a persistent slowdown, as larger incumbents have weaker incentives to innovate. My approach

complements this literature in that these statistical patterns are also consistent with the granular

drag mechanism emphasized in this paper, which operates through reallocation rather than

through innovation incentives. In that sense, my approach is similar to the Real Business Cycle

literature Kydland and Prescott (1982), which emphasizes how business cycles arise endogenously

from agents’ optimal responses to technology shocks. Here, I emphasize how expected productivity

growth arises endogenously from the optimal reallocation of resources in response to idiosyncratic

firm-level shocks, shaped by market structure.

Finally, the paper also contributes to empirical and theoretical work on how firm growth varies

with size. A natural benchmark is Gibrat’s law, which states that firm growth is independent

of size. This assumption has played a central role in the firm-dynamics literature because it

helps explain both the stability of the firm size distribution and the emergence of a Pareto upper

tail. Empirically, Gibrat’s law is approximately valid for average growth rates (Haltiwanger et

al., 2013), but it fails for higher moments. It is well documented that firm-growth volatility

decreases slowly with size (Stanley et al., 1996; Sutton, 1997; Yeh, 2025). I further document that

firm-growth skewness decreases with size. On the theoretical side, matching these patterns has

proven challenging, see Moran et al. (2024) for a recent technical discussion. Standard models,

such as Klette and Kortum (2004), imply that volatility should shrink rapidly with size. I show

that granularity naturally generates size-dependent volatility and skewness profiles consistent

with the data. Herskovic et al. (2020) are closest to my approach, showing how network linkages

across firms shape the propagation of shocks and the distribution of firm-level volatility. Finally,

Boehm et al. (2024) highlights how long-term contracting frictions in buyer–supplier networks can

give rise to persistent deviations from Gibrat’s law.

Outline The remainder of the paper is organized as follows. Section 2 presents the static

equilibrium, which holds at any point in time. In Section 3, I introduce the stochastic productivity

process for firms and derive the dynamics at the sectoral and aggregate levels. Section 4 presents
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the data, tests the model’s predictions, and estimates the model using the simulated method of

moments. Section 5 illustrates the quantified version of the model. Finally, Section 6 concludes.

2 Model

This section presents how production in the economy is organized at any point in time. The

representative household derives utility from consuming a discrete set of differentiated goods,

each produced by a single firm. Since the equilibrium holds at a point in time, I refer to this setting

as the static equilibrium. The next section introduces dynamics by allowing firm productivities to

evolve stochastically over time.

2.1 Preferences and Technology

There are a finite number of sectors N P N+, each populated by a finite number of differentiated

goods Nj P N+. A representative household supplies L units of labor inelastically, and derives

utility from consuming the discrete set of goods ttYiju
Nj
i=1u

Nj
j=1, where Yij is the consumption of

variety i in sector j. In particular, the representative household has Cobb-Douglas preferences over

sectoral output Yj:

Y =
N
ź

j=1

Y
ωj
j (1)

where ωj for j = 1, . . . , N are non-negative preference weights satisfying
řN

j=1 ωj = 1. This

formulation defines a sector as a market with a fixed expenditure share ωj in the aggregate

consumption basket.

Within each sector, preferences favor greater substitution than across sectors. Sectoral output

Yj is the result of combining the Nj differentiated goods in sector j with a constant elasticity of

substitution (CES) aggregator:

Yj =

 Nj
ÿ

i=1

Y
ε´1

ε
ij

 ε
ε´1

(2)

where ε ą 1 is the elasticity of substitution between goods in the same sector. Higher substitutability

within than across sectors reflects a greater degree of similarity and thus competition, among
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goods within a sector. For simplicity, I use Cobb–Douglas preferences, but the analysis extends to

more general CES preferences across sectors, provided that the elasticity of substitution across

sectors is lower than within sectors.

A single firm produces variety i in sector j with a constant-returns-to-scale technology specific

to that good:

Yij = AijLij. (3)

Here, Aij is firm-specific productivity and labor Lij is the only input. In reality, firms may operate

in several sectors or produce multiple varieties within a sector. My setting is analogous to assuming

that multi-product firms within the same sector have identical productivities across their products.

Multi-sector firms can be seen as a sum of independent single-sector subsidiaries.

The preference formulation over a discrete set ttYiju
Nj
i=1u

Nj
j=1 contrasts with the common

assumption of a continuum of infinitesimal sectors, each populated by a continuum of infinitesimal

firms.4 With finitely many sectors and firms, shocks to individual firms generate sectoral and

aggregate fluctuations. The quantitative relevance of these fluctuations depends on the joint size

distribution of firms and sectors, the number of firms and sectors, the elasticity of substitution,

and the distribution of firm shocks. For empirically plausible distributions and parameters, these

fluctuations can be quantitatively relevant (Gabaix, 2011).

Given this preference structure, the representative household maximizes utility by choosing

demand for each variety subject to the sum of expenditure on each variety (PijYij) not exceeding

the sum of labor income (WL), profits (Π), and government transfers (T). Solving the household’s

problem gives the demand system for each variety i in sector j:

Yij =

(
Pij

Pj

)´ε

ωj
P
Pj

Y (4)

where Pj ”

(
řNj

i=1 P1´ε
ij

) 1
1´ε

is the price index for sector j, and P ”
śNj

j=1 P
ωj
j is the aggregate price

index.

4In which case we could write Y = exp
(
ş1
0 ln Yjdj

)
and Yj =

(
ş1
0 Y

ε´1
ε

ij di
) ε

ε´1

, for some probability measures over i

and j with
ş1
0 ωjdj = 1.
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2.2 Sector Market Structure

Given the demand curves (4) and the production technology (3), firms choose prices Pij and

quantities Yij to maximize profits:

max
Pij, Yij

␣

(1 ´ τij)PijYij ´ WLij
(

.

Here, τij P (´1, 1) is a firm-specific tax/subsidy rate on sales that distorts firm incentives. The

government runs a balanced budget, and rebates total tax revenue from firms lump-sum to

households: T =
řNj

j=1
řNj

i=1 τijPijYij. The optimal firm price is such that the markup µij := Pij
W/Aij

is

given by the Lerner condition:

µij =
ζij

ζij ´ 1
1

1 ´ τij
(5)

where ζij := ´d ln Yij/d ln Pij is the perceived price elasticity of demand faced by firm i in sector j.

In the main body of the paper, I focus on monopolistic competition, where each firm takes the

sectoral price index Pj as given. In this case, the price elasticity of demand is constant and equal

to the elasticity of substitution: ζij = ε. All heterogeneity in markups is driven by government

distortions τij.

Given firm granularity, it is natural to consider that firms internalize their impact on sector

aggregates.5 I consider oligopolistic market structures with endogenous markups à la Atkeson and

Burstein (2008) both under Bertrand and Cournot competition. Under oligopolistic competition, the

perceived price elasticity of demand depends on the market share of the firm. See Appendix A.8

for details.

2.3 Equilibrium Definition and Efficient Allocation

I normalize the labor wage to W = 1. The equilibrium is defined as follows. Given a choice of

market structure for the perceived elasticity of demand ζij, and a sequence of firm productivity

vectors ttAiju
Nj
i=1u

Nj
j=1, a static equilibrium is (i) vectors of prices and quantities ttPij, Yij, Liju

Nj
i=1u

Nj
j=1,

(ii) vectors of sectoral prices and quantities tPj, Yj, Lju
N
j=1, and (iii) aggregate prices and quantities

tP, Y, Lu such that: firms set prices and quantities to maximize profits given the demand curves (4)

5I abstract from the possibility of firms internalizing their impact on the aggregate price index P. See Appendix A.8
in Burstein et al. (2025) for a case in which this assumption is relaxed.
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and ζij; household demand (4) holds; and the labor market and the government budget clear.

When markups are constant across firms and sectors (µij = µ), the decentralized equilibrium

allocation is efficient; it coincides with the choice of a benevolent social planner who maximizes

aggregate output subject to the technological and resource constraints.

2.4 Firm-Level Outcomes

I denote the sales share of firm i in sector j as sij, and its cost share as rsij. This notation follows

Baqaee and Farhi (2020), who show that, in the presence of distortions, cost-based shares play a

central role in determining how shocks propagate through the economy. Given vectors of firm

productivities and markups, we can express sales and cost shares as composites of markup-adjusted

productivities in the sector:

sij :=
PijYij

PjYj
=

(
Aij/µij

)ε´1

řNj
k=1

(
Akj/µkj

)ε´1
, and rsij :=

WLij

WLj
=

sij/µij
řNj

k=1 skj/µkj

. (6)

Note that, under homogeneous markups, sales and cost shares coincide. A gap between both

reflects markup dispersion, and thus misallocation of resources within the sector. Holding markups

and aggregate expenditure constant, the productivity elasticity of sales and cost shares are given

by:

B ln sij

B ln Akj
=

$

’

&

’

%

(ε ´ 1)(1 ´ sij) if k = i,

´(ε ´ 1)skj if k ‰ i,
and

B lnrsij

B ln Akj

$

’

&

’

%

= (ε ´ 1)(1 ´ rsij) if k = i,

= ´(ε ´ 1)rskj if k ‰ i.
(7)

When the number of firms in the sector is large and each firm is small (sij Ñ 0), the elasticity

is constant and equal to ε ´ 1, as in the standard framework with a continuum of firms (Lucas,

1978). However, when firms are granular, the elasticity decreases with firm size, as larger firms

eventually saturate their markets of operation. Another difference with the standard framework

with infinitesimal firms is that shocks to one firm affect the sales and cost shares of all other firms

in the sector.
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2.5 Aggregation

Sector- and aggregate-level productivity are defined as labor productivity at the respective levels of

aggregation: Aj := Yj/
řNj

i=1 Lij and A := Y/L. Sectoral and aggregate markups are defined as the

ratio of price to marginal cost at the respective levels of aggregation: µj := Pj Aj and µ := P A, and

can be expressed as cost-share-weighted averages of firm- and sector-level markups, respectively:

µj =

Nj
ÿ

i=1

rsijµij, and µ =

Nj
ÿ

j=1

rωjµj (8)

where rωj := ωj/µj
řN

k=1 ωk/µk
is the aggregate cost share of sector j.6 Using these expressions, we can

write sector- and aggregate-level productivity as functions of productivities and markups at lower

levels of aggregation:

Aj =

 Nj
ÿ

i=1

(
µij

µj

)´ε

Aε´1
ij

 1
ε´1

, and A =
N
ź

j=1

(
µ

µj
Aj

)ωj

. (9)

The presence of markup dispersion within and across sectors leads to an inefficient allocation of

resources and, ultimately, lower sectoral and aggregate productivity. From equation (6), if a firm

(sector) charges a higher markup than the sector (aggregate) markup, i.e., µij ą µj (µj ą µ), its

sales share sij (ωj) exceeds its cost share rsij ( rωj). From an efficiency perspective, that firm (sector)

is smaller than socially optimal, and it would be beneficial to reallocate labor toward it. By the

same logic, if instead µij ă µj (µj ă µ), the firm (sector) is larger than socially optimal, such that

reallocating labor away from it would be beneficial.

Since there is a finite number of firms and sectors, firms are granular at both levels of

aggregation. Section 3 introduces firm productivity dynamics and characterizes how granularity

affects sectoral and aggregate productivity growth in both efficient and misallocated economies.

3 Productivity Dynamics

Having characterized the static allocation, this section shows how idiosyncratic firm-level shocks

propagate to sectoral and aggregate productivity, and how the concentration of within-sector sales

6Markups can also be expressed as harmonic means of sales-share-weighted markups, or as the inverse sector and
aggregate labor shares respectively.
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and costs affects expected growth.

3.1 Firm-Level Productivity Dynamics

Following the tradition in the firm dynamics literature, I assume that firm-level productivity

follows a proportional random growth process, often referred to as Gibrat’s law. Specifically, firm

productivity features: (i) a trend component g which is common across all firms, (ii) frequent,

thin-tailed continuous shocks, captured by an i.i.d. Brownian motion Wijt with diffusion coefficient

σ, and (iii) an i.i.d. jump component driven by a Poisson process Qijt with intensity λ and i.i.d.

jump size Jijt „ FJ , capturing rare and potentially asymmetric large shocks.7 Formally, firm

productivity evolves according to the following stochastic differential equation:

dAijt

Aijt
= gdt + σdWijt +

(
eJijt ´ 1

)
dQijt. (10)

It is useful to distinguish between sectoral productivity growth and average firm productivity

growth. Since the shocks are i.i.d. across firms, average firm productivity growth is the expected

growth rate of an individual firm:

Et

[
1
dt

d ln Aijt

]
= g ´

σ2

2
+ λE[J], (11)

that is, expected average firm productivity is the common drift minus the concavity correction

σ2/2 due to Jensen’s inequality, plus the expected jump contribution λE[J].8

In contrast to the case with infinitesimal firms, random growth in firm productivity does not

imply that firm sales satisfy Gibrat’s law, since changes in firm sales depend on the market share

of the firm. One contribution of this paper is to show how granularity generates size-dependent

firm dynamics in line with the data even with random growth in individual productivity.

Entry and Exit Incumbent firms exit randomly at a Poisson rate δ ě 0, while new firms enter at

rate ν ě 0. Entrants draw their initial productivity from a time-shifting distribution Fe,t that moves

rightward at the trend growth rate η, so that Fe,t(A) = Fe(Ae´ηt). The parameter η captures the

7Proportional random growth is the canonical baseline because: (i) firm growth rates are roughly size-independent
for medium and large firms, e.g., Haltiwanger et al. (2013), and (ii) with a stabilizing force like entry and exit (Gabaix,
2009), it yields a stationary Pareto-tailed size distribution consistent with the data. Heuristically, over a short interval
∆t, ∆Wijt „ N (0, ∆t), so that E[∆Wijt] = 0 and Var(∆Wijt) = ∆t; independently, the jump indicator ∆Qijt = 1 with
probability λ ∆t and 0 otherwise, Pr(∆Qijt = 1) = λ ∆t + o(∆t).

8Throughout the paper, I use Et[d ln Xt/dt] as shorthand for lim∆tÑ0 ∆t´1Et[ln Xt+∆t ´ ln Xt].
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economy’s underlying trend in technological progress. A higher η means new entrants start with

increasingly higher productivities, reflecting overall technological improvement. For economically

plausible values of η, there will be a stationary firm productivity distribution across sectors with

a Pareto tail (P(Aij ă a) „ a´αtail for αtail ą 0), which is uniquely determined by the model

parameters. See Appendix A.3 for details.

Continuous Time Working in continuous time makes the analysis tractable. Over a discrete time

period, many firms can experience shocks at once, so tracking how simultaneous shocks reallocate

demand across a finite set of producers becomes intractable. In continuous time, Brownian motions

have continuous paths and, over an infinitesimal interval dt, at most one Poisson jump can occur.

These properties make it possible to study sectoral and aggregate expected productivity growth

analytically, which is the focus of the remainder of this section.

3.2 The Granular Drag in Efficient Economies

This subsection analyzes how firm-level productivity dynamics interact with granularity to shape

expected sectoral productivity growth in efficient economies. For expositional simplicity, I begin

with the case without jumps (λ = 0) or entry and exit (δ = ν = 0), such that (10) reduces to

dAijt/Aijt = gdt + σdWijt. The contributions of jumps, entry, and exit appear additively in expected

sectoral productivity growth, such that the intuition built in this baseline case extends naturally to

the more general setting. The following proposition characterizes expected sectoral productivity

growth in this baseline setting.

Proposition 1. Let Hjt :=
ř

i s2
ijt denote the sectoral sales Herfindahl–Hirschman index, where sijt are

the firms’ sales shares. Consider an efficient allocation in which firm productivities evolve according to

dAijt/Aijt = g dt + σ dWijt, where tWijtu are i.i.d. standard Brownian motions. Then, the expected sectoral

productivity growth rate γjt := Et[
1
dt d ln Ajt] is

γjt = g ´
σ2

2
loomoon

Average-firm

+ (ε ´ 1)
σ2

2
(
1 ´ Hjt

)
looooooooooomooooooooooon

Reallocation

, (12)

where g ´ σ2

2 is the expected average-firm productivity growth, and (ε ´ 1) σ2

2

(
1 ´ Hjt

)
is a positive

reallocation residual.

In an efficient economy with idiosyncratic diffusion shocks, the Herfindahl–Hirschman index

12



(HHI) measure of sales concentration Hjt :=
ř

i s2
ijt is a sufficient statistic for the role of granularity

in shaping expected sectoral productivity growth. The HHI lies in [1/Nj, 1]: it equals 1/Nj when

all firms have equal sales shares and 1 when a single firm accounts for the entire sector. Thus,

more concentrated sectors (higher Hjt) exhibit relatively lower expected productivity growth due

to reduced reallocation gains. I refer to the proof in Appendix A.2 and focus here on building

the intuition behind the result using two polar cases. First, consider the case of a monopolist that

dominates the whole sector, such that s1jt = 1 and Hjt = 1. The expected growth rate reduces to

the expected growth of the single firm:

γ1 := lim
s1jtÑ1

γjt = g ´
σ2

2
loomoon

Average-firm

. (13)

I refer to this term as the average-firm contribution to growth, γ1 = Et[d ln Aijt/dt]. Second,

consider the polar opposite case of a sector with a continuum of infinitesimal firms. I refer to this

setting as the fully diversified case since the law of large numbers holds and the growth rate is now

deterministic. Since no single firm has a sizable market share, Hjt = 0, and the growth rate can be

written as the average-firm term plus a positive residual that captures reallocation gains:

γ8 := lim
NjÑ8

γjt = g ´
σ2

2
loomoon

Average-firm

+ (ε ´ 1)
σ2

2
loooomoooon

Reallocation

. (14)

Where does the reallocation term in (14) come from? Heuristically, with only diffusion shocks,

over a short interval ∆t, half of the firms experience a positive productivity shock of magnitude

σ
?

∆t, while the other half experience a negative shock of the same magnitude, ´σ
?

∆t. Because

goods are gross substitutes (ε ą 1), workers are reallocated toward the newly more productive

firms and away from the less productive ones:

Et[∆ ln Ajt] =
1

ε ´ 1
ln

[
1
2 (1 + σ

?
∆t)ε´1 + 1

2 (1 ´ σ
?

∆t)ε´1

]
= ´ σ2

2 ∆t
loomoon

Average-firm

+ (ε ´ 1) σ2

2 ∆t
looooomooooon

Reallocation

+o(∆t2)

Note that the underlying productivity distribution for the continuum of firms does not play a role

in the reallocation gains: for every "unlucky" firm that experiences a negative shock, there is a

similarly sized "lucky" firm that experiences a positive shock to which resources are reallocated.

Expected reallocation increases with the elasticity of substitution ε, as the response of labor is
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stronger, and the volatility of idiosyncratic shocks σ, as bigger responses are profitable. Due to

Jensen’s inequality, higher dispersion in firm-level shocks also lowers average firm productivity

growth by σ2/2. However, when workers are reallocated in a more than one-to-one fashion (ε ą 2),

the reallocation gains dominate the volatility drag, leading to higher expected sectoral productivity

growth. This logic extends to more general idiosyncratic shocks, as I show in the case with jumps.

Beyond the two benchmarks, a sector with finitely many firms inherits only part of the

reallocation gains from the continuum case: reallocation gains scale with one minus the sales HHI:

Reallocationjt = (ε ´ 1)
σ2

2
(
1 ´ Hjt

)
Intuitively, in a sector with infinitely many firms, for every firm that experiences a negative

shock, there is always a similarly sized firm that experiences a positive shock. However, with

finitely many firms, a negative shock to a large firm might not be offset by positive shocks to

other firms, and vice versa. Because goods are gross substitutes (ε ą 1), granularity reduces

expected reallocation gains, leading to lower expected productivity growth. In the extreme case of

a monopolist, there are no reallocation gains at all. I refer to this phenomenon as the granular drag

on expected productivity growth.

Jumps I extend the previous analysis to include jumps (λ ą 0) in firm productivity. To keep the

algebra light, I assume that there are no common trend or diffusion components (g = 0, σ = 0), so

that firm productivity evolves purely through jumps: dAijt/Aijt = (eJijt ´ 1)dQijt.9 The expected

growth rate of sectoral productivity is now:

Proposition 2 (Jumps). Consider an efficient allocation in which firms’ productivities evolve according

to dAijt/Aijt = (eJijt ´ 1) dQijt with Qijt a Poisson process of intensity λ and Jijt „ FJ such that

E[e(ε´1)J ] ă 8. Then the expected sectoral productivity growth rate γjt := Et
[ 1

dt d ln Ajt
]

is

γjt =
λ

ε ´ 1

Nj
ÿ

i=1

E
[
ln
(

1 + sijt
(
e(ε´1)J ´ 1

))]
. (15)

See Appendix A.2 for the proof. While more complex than in the diffusion case, the role of

granularity is explicit: jumps aggregate through sales shares sijt. Consider again the two polar

9The general case with both diffusion and jumps is just the sum of the two components, as they are independent.
See Appendix A.2 for the general case.
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cases. With jumps only, the monopolist case (s1jt = 1) and the fully diversified case (Nj Ñ 8) yield

respectively the following expected growth rates:

γ1 = λE[J]
loomoon

Average-firm

,

γ8 = λE[J]
loomoon

Average-firm

+ λ
E[e(ε´1)J ´ 1] ´ (ε ´ 1)E[J]

ε ´ 1
loooooooooooooooooomoooooooooooooooooon

Reallocation

.

The expected growth rate in the fully-diversified case can again be decomposed into an average-

firm term plus a reallocation term. As Proposition 6 shows, the reallocation term is always positive

for any well-behaved jump distribution. The intuition for the reallocation term is similar to the

diffusion case. Over a short interval ∆t, a fraction λ∆t of firms experience a jump. For any jump

distribution, there are winners and losers. For example, if the jump distribution is a positive

constant, like in quality ladder models (Grossman and Helpman, 1991; Aghion and Howitt, 1992),

winners are firms that jump, while losers are firms that do not. Because goods are gross substitutes

(ε ą 1), workers are reallocated toward the more productive firms that jumped, and away from

the ones that did not. Since there are infinitely many firms, for every fraction λ∆t of firms that

jump, there is a fraction 1 ´ λ∆t of similarly sized firms that do not jump, so the cross-sectional

distribution of incumbent productivities does not affect expected reallocation gains.

With finitely many firms, granularity again reduces reallocation gains. While the expression is

more complex, an approximation for small jumps J « 0 makes the role of granularity explicit:

Reallocationjt =
λ

ε ´ 1

Nj
ÿ

i=1

Et

[
ln
(

1 + sijt

(
e(ε´1)J ´ 1

))]
´ λE[J]

« λ(ε ´ 1)
E[J2]

2
(
1 ´ Hjt

)
+ λ

(
(ε ´ 1)2 E[J3]

3!
(
1 ´ 3Hjt + 2H3,jt

))
+ λ

(
(ε ´ 1)3 E[J4]

4!
(1 ´ 7Hjt + 12H3,jt ´ 6H4,jt)

)
+ O(E[J5]),

Up to second order, the reallocation term mirrors the diffusion case, with reallocation gains

scaling with one minus the sales HHI. Higher-order terms depend on higher-order generalized

HHIs Hn,jt :=
řNj

i=1 sn
ijt. For example, the third-order term depends on the skewness of the jump
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distribution E[J3] and captures asymmetries in firm productivity growth. If the jump distribution

is left-skewed (E[J3] ă 0), concentration reduces reallocation gains further; as concentration rises,

the sector productivity inherits the negative skewness of the large firms, which cannot be offset by

the smaller firms. Conversely, if the jump distribution is right-skewed (E[J3] ą 0), concentration

mitigates reallocation gains less; as concentration rises, the sector productivity inherits the positive

skewness of the large firms, which dominate sector performance. However, the granular drag for

the third-order term is always bounded between 0 and 1, since 0 ď 3Hjt ´ 2H3,jt ď 1. Without

jumps, it is obvious that expected sectoral productivity growth is bounded below by the monopolist

(Hjt = 1) case and above by the fully diversified (Hjt = 0) case. Proposition 6 in Appendix A.2

shows that this result continues to hold with jumps, implying that the reallocation term is always

non-negative for any well-behaved jump distribution.

Entry and Exit Entry and exit also contribute to expected sectoral productivity growth additively.

To isolate their role, I assume that incumbent firms’ productivity is constant over time (g = 0,

σ = 0, λ = 0), so that dAijt/Aijt = 0, but firms exit at rate δ and new firms enter at rate ν, drawing

their initial productivity from a time-shifting distribution Fe,t that grows at rate η. The following

proposition shows how entry and exit contribute to expected sectoral productivity growth.

Proposition 3 (Entry and Exit). Consider an efficient economy where incumbent firms have constant

productivity, but exit at rate δ and new firms enter at rate ν, drawing their initial productivity from a

distribution Fe,t. Then, the expected sectoral productivity growth rate γjt := Et[
1
dt d ln Ajt] is given by:

γjt =
ν

ε ´ 1
Et

[
ln

(
1 +

(
Aet

Ajt

)ε´1
)]

loooooooooooooooooooomoooooooooooooooooooon

Entry

+
δ

ε ´ 1

Nj
ÿ

i=1

ln(1 ´ sijt)

looooooooooomooooooooooon

Exit

,

where Aet „ Fe,t is the productivity of entrants.

The expected contribution of entry is larger when entrants are more productive relative to

incumbents. Exit contributes negatively to expected sectoral productivity growth, with larger

contributions when large firms exit. Applying a second-order approximation for small sales shares

sijt « 0 makes the role of granularity explicit:

Exitjt « ´
δ

ε ´ 1

(
1 +

1
2
Hjt

)
.
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Intuitively, exogenous exit is similar to an extremely left-skewed jump distribution. The higher the

elasticity of substitution ε, the smaller the negative impact of exit on expected sectoral productivity

growth, as workers are reallocated toward surviving firms. However, concentration amplifies the

negative impact of exit, as losing a large firm has a bigger effect on sector productivity than losing

a small firm. Exogenous exit might appear extreme, but as I show in Appendix B.2, in the data,

large establishments do exit, and when they do, sectoral output contracts significantly.

Percentage Growth The focus so far has been on expected log growth rates Et[d ln Ajt/dt]. Do

these results carry over to expected percentage growth rates Et[
1
dt dAjt/Ajt]? The answer is yes,

subject to the elasticity of substitution being large enough. The following corollary shows that

when ε ě 2, the expected percentage growth rate can also be decomposed into an average-firm

term plus a reallocation term that scales with one minus the sales HHI.

Corollary 1 (Percentage Growth). In an efficient economy with firm productivity dynamics given by

dAijt/Aijt = gdt + σdWijt, expected sectoral percentage productivity growth is given by:

Et

[
1
dt

dAjt

Ajt

]
= g

loomoon

Avg. Firm

+ (ε ´ 2)
σ2

2
(
1 ´ Hjt

)
looooooooooomooooooooooon

Reallocation

. (16)

where g is the average firm percentage growth rate Et[
1
dt dAijt/Aijt], and (ε ´ 2) σ2

2 (1 ´ Hjt) is the

reallocation residual, with Hjt :=
řNj

i=1 s2
ijt the sales HHI of sector j.

The reallocation term is non-negative if and only if ε ě 2. Because firms are granular, sectoral

productivity is volatile. Taking the logarithm of a volatile variable induces a negative concavity

correction due to Jensen’s inequality. In this case, the correction term is ´ σ2

2 Hjt. Combining this

correction with the reallocation term from Proposition 1 gives the result. Reassuringly, both log

and percentage growth coincide as the number of firms grows large and the law of large numbers

holds such that productivity growth becomes deterministic. This result extends to the general case

with jumps as well; see Appendix A.2 for details.

Aggregate Productivity Growth The previous analysis extends naturally to the aggregate

economy with N sectors. Under efficient allocation across sectors, aggregate productivity is

given by the Cobb-Douglas index At =
śN

j=1 A
ωj
jt , where ωj is sector j’s expenditure share which

is fixed over time. The following corollary to Proposition 1 characterizes aggregate productivity
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growth.

Corollary 2 (Aggregate Productivity Growth). In an efficient economy with sectoral sales shares ωj and

firm productivity dynamics given by dAijt/Aijt = gdt + σdWijt, expected aggregate productivity growth

γt := Et[
1
dt d ln At] is given by:

γt = g ´
σ2

2
+ (ε ´ 1)

σ2

2

1 ´

N
ÿ

j=1

ωjHjt

 (17)

where
řN

j=1 ωjHjt is the sales-weighted aggregate HHI.

The proof follows directly from Proposition 1 and the Cobb-Douglas aggregation across sectors.

The relevant measure of granularity at the aggregate level is the sales-weighted average of sectoral

HHIs. There is an aggregate granular drag on productivity growth when (i) a few concentrated

sectors dominate the economy (high ωj for sectors with high Hjt) or (ii) many sectors contribute

significantly to the economy, but each sector is itself concentrated (high Hjt for many j). Even if

the number of sectors is large, the sales-weighted average HHI does not converge to zero unless

the number of firms per sector also grows to infinity. If, for example, there is a secular trend of

increasing sectoral concentration, aggregate productivity growth is dragged down as well.

3.3 The Granular Drag in Economies with Distortions

The preceding analysis assumes that the allocation of labor resources is efficient. However, there

is ample evidence of misallocation of resources across firms, e.g., Hsieh and Klenow (2009).

To understand the role of misallocation for sectoral productivity growth, I first allow for firm-

specific markup heterogeneity that is fixed over time. For example, such heterogeneity could

arise from government distortions τij. For expositional clarity, I focus on the case without jumps

dAijt/Aijt = gdt + σdWijt, and leave the general case with jumps to Appendix A.

With markup heterogeneity, sales and cost shares differ. If a firm has a higher than average

markup, it has a higher sales share relative to its cost share (i.e., sijt ą rsijt). This firm employs

fewer workers than in the efficient allocation. Reallocating labor toward this firm increases sectoral

productivity. The converse is true for firms with lower than average markups. Thus, misallocation

reduces the level of sectoral productivity relative to the efficient allocation. The next proposition

shows how misallocation also affects growth when firms are granular.
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Proposition 4 (Sectoral Productivity Growth under Misallocation). Let Hjt :=
řNj

i=1 s2
ijt and rHjt :=

řNj
i=1(rsijt)

2 denote the sectoral sales- and cost-based Herfindahl–Hirschman indices, where sijt and rsijt

are, respectively, the firms’ sales and cost shares. Consider a sector where firm productivity follows

dAijt/Aijt = g dt + σ dWijt and firms have fixed markups µij. Then the expected sectoral productivity

growth rate γjt = Et[d ln Ajt/dt] is given by:

γjt = g ´
σ2

2
loomoon

Average-firm

+ (ε ´ 1)
σ2

2

[
1 ´ Hjt ´ (ε ´ 1)

(
Hjt ´ rHjt

)]
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Reallocation

. (18)

When Hjt = rHjt (homogeneous markups), this reduces to the efficient-economy case in Proposition 1.

The proof is in Appendix A.4. In the efficient allocation, sales and cost shares coincide, and the

sales HHI Hjt is, up to second order, a sufficient statistic for how granularity affects growth. Under

misallocation, however, the difference between sales- and cost-based shares matters as well. If we

compare equation (18) to the efficient case in equation (12), for a fixed sales concentration Hjt,

misallocation increases or decreases the expected growth rate by (ε ´ 1)2 σ2

2 (Hjt ´ rHjt). Intuitively,

if more productive firms have high markups (relative to small firms), sales concentration Hjt is

high relative to cost concentration rHjt. In this case, the granular drag on growth is amplified;

as resources are misallocated away from the most productive firms, it is beneficial to reallocate

workers toward these firms. However, these firms are the largest ones, and granularity limits

the potential reallocation gains, further dragging down growth. If the opposite is true, and more

productive firms have low markups, sales concentration is low relative to cost concentration,

making reallocation gains easier to achieve despite granularity, mitigating the drag on growth.

Empirically, the former case is more common, as large firms tend to have lower labor shares (Autor

et al., 2020).

Note that the impact of misallocation on growth vanishes in the two polar cases of monopoly

and full diversification. In the monopolist case (Hjt, rHjt Ñ 1), there is a single firm, so there is no

misallocation within the sector. In the fully diversified case (Hjt, rHjt Ñ 0), granularity vanishes,

and so does the impact of misallocation on growth. This result follows the same logic as in the

efficient economy: with infinitely many firms, for every firm that experiences a negative shock,

there is always a similarly sized and with a similar markup firm that experiences a positive shock,

so the distribution of firm productivity and markups does not matter for reallocation gains. Hence,

misallocation interacts dynamically with granularity in a way that is not present in models with
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infinitesimal firms. When firms are discrete rather than infinitesimal, the joint distribution of

productivity and markups shapes the granular drag on growth. With diffusion shocks, the sales

and cost HHIs are sufficient statistics for this drag.

Sectoral Markup Growth Even with firm markups fixed over time, sectoral markups µjt evolve

endogenously as the sales and costs shares of firms change. Using that µjt = Pjt Ajt, a simple

Corollary to Proposition 4 characterizes expected sectoral markup growth.

Corollary 3. Consider an economy where firm productivity follows the process dAijt/Aijt = gdt + σdWijt,

and firms have fixed markup heterogeneity µij. Then, expected sectoral markup growth is given by:

Et

[
1
dt

d ln µjt

]
= (ε ´ 1)2 σ2

2

(
rHjt ´ Hjt

)
. (19)

The proof is in Appendix A.4. Comparing (19) to the misallocation growth expression in (18),

we see that expected sectoral markup growth is proportional to the difference between cost and

sales HHIs. If more productive firms have high markups, sales concentration is high relative to

cost concentration, and sectoral markups tend to decline on average. Intuitively, a firm with an

above average markup responds more with its cost share than with its sales share to a positive

productivity shock (see Equation (7)), leading to a decline in the sectoral markup. Conversely, if

more productive firms have low markups, sectoral markups tend to rise on average. Thus, the

joint distribution of productivity and markups across firms shapes the endogenous dynamics of

sectoral markups.

Aggregate Growth For efficient economies, aggregate productivity growth inherits the granular

drag from sectoral sales-weighted HHIs. With distortions, aggregate productivity growth also

depends on the joint distribution of productivity and markups across firms and sectors. The next

proposition shows that expected aggregate productivity γt := Et[
1
dt d ln At] is given the sectoral

sales-weighted difference between expected sectoral productivity growth and markup growth,

plus expected aggregate markup growth:

γt =
N
ÿ

j=1

ωj

(
γjt ´ Et

[
1
dt

d ln µjt

])
+ Et

[
1
dt

d ln µt

]
.

Proposition 5 (Aggregate Productivity Growth under Misallocation). Let Hjt and rHjt denote sectoral
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sales- and cost-based HHIs, ωj and rωj sectoral sales- and cost-based shares, and Vjt :=
řNj

i=1(sijt ´rsijt)
2 the

within-sector dispersion between sales and cost shares. If dAijt/Aijt = g dt + σ dWijt and firm markups µij

are fixed, then expected aggregate markup growth and aggregate productivity growth γt := Et[
1
dt d ln At]

are:

Et

[
1
dt

d ln µt

]
= (ε ´ 1)2 σ2

2

N
ÿ

j=1

rωj
(
rHjt ´ Hjt

)
´ (ε ´ 1)2 σ2

2

N
ÿ

j=1

rωj(1 ´ rωj)Vjt, (20)

γt = g ´
σ2

2
+ (ε ´ 1)

σ2

2

N
ÿ

j=1

ωj
(
1 ´ Hjt

)
+ Et

[
1
dt

d ln µt

]
. (21)

The proof is in Appendix A.4 and follows directly from Proposition 4 and Corollary 3.

The aggregate markup is the sectoral cost-share weighted average of sectoral markups. Thus,

aggregate markup growth depends on the sectoral cost-share weighted average of the difference

between cost and sales HHIs. The second term captures the dependence of sectoral cost shares

rωj := ωjµ
´1
jt /

řN
k=1 ωkµ´1

kt on sectoral markups µjt which evolve endogenously according to

Corollary 3. Again, aggregate productivity growth, is the sum of two components: average-firm

growth plus a reallocation term that depends on the sales-weighted aggregate HHI, plus expected

aggregate markup growth.

Taking Stock In summary, the model predicts that micro-level reallocation gains are limited

by granularity. As concentration increases, the ability to reallocate resources toward the most

productive firms diminishes, dragging down expected sectoral productivity growth. This granular

drag on growth is present both in efficient and misallocated economies, and it extends naturally to

aggregate productivity growth. I test these predictions empirically in the next section.

4 Data and Estimation

In this section, I describe the data sources and present reduced-form evidence on the link between

granularity and sectoral productivity growth. Building on the previous section’s theory, firm-

level idiosyncratic shocks aggregate into sectoral dynamics: under efficient allocation, greater

concentration attenuates reallocation gains and lowers expected productivity growth. The relevant

concentration metric is the sales-based Herfindahl-Hirschman Index (HHI); when markups are

dispersed, the relevant object is the gap between sales- and cost-based HHIs. I test these predictions
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using Swedish firm-level data, complemented by industry-level evidence from CompNet and the

U.S. Census. This section concludes with the calibration strategy used to discipline the model for

the quantitative analysis in section 5.

4.1 Data

Swedish firm data I use administrative microdata on the universe of Swedish incorporated

firms from the Serrano database. Compiled from the Swedish Companies Registration Office

and Statistics Sweden, with group links from Dun & Bradstreet, Serrano provides firm–level

financials from 1998 to 2022, covering 1,222,146 unique firms and 11,311,055 firm–years.10 The

exact construction of the final sample is detailed in Appendix B.1.

U.S. Census As further robustness, I use U.S. industry-level data from the replication package

from Ganapati (2021), who constructs TFP and concentration measures at the 6-digit NAICS level.

Results are reported in Appendix B.3.

CompNet CompNet is a harmonized European dataset reporting industry–level indicators. I

extract two–digit NACE measures of productivity growth and concentration to test the model’s

predictions in a broader cross-country context. Results are reported in Appendix B.4.

4.2 Reduced-Form Evidence

I define a sector as a 5-digit industry (SNI 2007, which maps to NACE Rev. 2) and compute firm

market shares from nominal sales within each sector-year. Unfortunately, there are no measures of

TFP at the 5-digit level. I proxy sectoral productivity using labor productivity (nominal output over

labor). Labor productivity is an imperfect measure of TFP, as it confounds changes in markups

with changes in efficiency. I present robustness checks in Appendix B, including specifications that

control for future concentration. I further test the model’s predictions using CompNet and U.S.

data from Ganapati (2021). For the latter, industry-level TFP and concentration measures at the

6-digit NAICS level are available, and I find a negative relationship between concentration and

productivity growth consistent with the model.

In practice, industries might differ in the deep parameters of the model, like the elasticity

10See Weidenman (2016); data retrieved 15/10/2023.
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of substitution, as well as in the primitives of the productivity process. To control for such

heterogeneity, ideally I would use industry fixed effects. I report such regressions in Appendix B,

which show a clear negative relationship between concentration and productivity growth within

industries. However, given my imperfect proxy for productivity, a high level of concentration

today might be mechanically correlated with a high level of labor productivity today. Including

an industry fixed effect makes that mechanical correlation carry over to future labor productivity,

leading to a spurious negative correlation between concentration and productivity growth. To

avoid this issue, I instead include current labor productivity as a control, and use 2-digit industry-

by-year fixed effects to control for broad industry trends. The current labor productivity control

captures the mechanical correlation between concentration and productivity levels, isolating the

effect of concentration on future productivity growth.

I estimate two regression specifications corresponding to the efficient and inefficient economy

cases described in the theory, as outlined in equations (22) and (23). First, I regress one-year

ahead labor productivity growth on the Herfindahl-Hirschman Index (HHI) of sales shares. In

an efficient economy with constant markups, this is the relevant concentration measure, and the

theory predicts a negative coefficient β ă 0. Second, I regress productivity growth on both sales

and cost share HHIs. When markups differ across firms, the relevant concentration measure is the

gap between sales and cost HHIs, which I include as an additional regressor in equation (23). The

theory predicts that both coefficients will be negative and that the coefficient on the gap will be

larger in magnitude β2 ă β1 ă 0.

ln Ajt+∆t ´ ln Ajt = α + βHjt + β2 ln Ajt + ϵjt+∆t (22)

ln Ajt+∆t ´ ln Ajt = α + β1Hjt + β2

(
Hjt ´ rHjt

)
+ β3 ln Ajt + ϵjt+∆t (23)

Table 1 reports results. Columns (1) and (2) show that higher sales concentration is associated

with lower 5-year ahead labor productivity growth. In particular, an increase in the HHI of

1 percentage point is associated with a 0.2% lower five-year-ahead labor productivity growth.

Columns (3) and (4) include both sales and cost concentration. The coefficient on sales concentration

remains negative, but shrinks substantially and is no longer statistically significant. The gap

between sales and cost concentration drives the results: an increase in the difference between sales

and cost concentration of 1 percentage point is associated with a 1% lower five-year ahead labor

productivity growth. These results are consistent with the model’s predictions.
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Table 1: Concentration and Productivity Growth: Swedish 5-digit industries, 1998–2022

Efficient With Distortions

ln(Prodt+5) ´ ln(Prodt) ln(Prodt+5) ´ ln(Prodt)

(1) (2) (3) (4)

HHIt sales -0.323***

(0.062)

-0.215**

(0.062)

-0.046

(0.066)

-0.013

(0.065)

HHIt sales ´ HHIt costs -1.349***

(0.199)

-1.164***

(0.198)

ln(Prodt) -0.106***

(0.017)

-0.070***

(0.016)

Observations 7218 7218 7218 7218

R2 0.292 0.318 0.342 0.352

R2 Within 0.026 0.062 0.094 0.109

Notes: Unit of observation is 5-digit SNI in Sweden, 1998-2022. ln(Prod) is log-labor

productivity, HHI (sales/costs) based on firm sales and personnel cost shares within

the industry. All regressions include 2-digitˆyear fixed effects. SEs clustered by 5-digit

industry and year. “Efficient” refers to the specification motivated by the predictions of

the model without distortions, while “With Distortions” includes the additional control

for the HHI gap (sales - costs) as motivated by the model with markup dispersion.

I run similar regressions for U.S. and CompNet data in Appendix B.3 and B.4, respectively,

finding results consistent with those reported here. For the U.S., I find that whenever an industry is

more concentrated in sales than its long-run average, it experiences lower total factor productivity

growth in the following five years. This finding is robust to controlling for future concentration,

suggesting that the results are not driven by industry fixed effects. For CompNet, I find that the

gap between sales and cost HHIs negatively predicts five-year ahead productivity growth, while

sales HHI alone shows no systematic effect. Quantitatively, a one-percentage-point increase in the

difference between the two measures predicts a reduction in 5-year productivity growth of about

0.5 percentage points, consistent with a granular drag operating through misallocation.

The theory predicts further that the relationship between productivity growth and the HHIs

should be, up to second order, linear. Figure 1 shows binned scatter plots of the nonparametric

relationship between concentration and productivity growth, with the linear fit from columns (2)
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and (4) of Table 1 overlaid.11 Panel (A) shows the relationship between sales HHI and five-year

ahead productivity growth, controlling for current productivity and fixed effects. While the

relationship is negative, linearity is not apparent. Panel (B) shows the relationship productivity

growth and the difference between sales and cost HHIs. As the theory predicts, a negative linear

relationship is clearly visible, supporting the model predictions that granularity affects sectoral

dynamics through misallocation when markups differ across firms.
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Figure 1: Binscatters of five-year labor-productivity growth on concentration: Swedish 5-digit
industries, 1998–2022. Panel (A) plots ln(Prodt+5) ´ ln(Prodt) against the sales HHI; Panel (B)
plots the same outcome against the HHI gap (sales ´ costs). Bins are ventiles (20). Each panel
partials out current ln(Prodt) and 2-digitˆyear fixed effects; Panel (B) additionally partials out
the sales HHI. Partialing out and 95% confidence bands are computed using the semiparametric
binscatter procedure of Cattaneo et al. (2024). Sample: 7,218 industry–year observations.

Since my measure of productivity is labor productivity rather than TFP, I cannot rule out that

part or all of the estimated correlation is driven by changes in markups rather than productivity.

This, however, would not invalidate the mechanism proposed in the model. As shown in equation

(19), the expected growth rate of sectoral markups is also decreasing in the gap between sales and

cost HHIs. Thus, even if the estimated coefficients are driven by changes in markups rather than

efficiency, the model fits the data well.

I conclude this subsection with a note of caution on the magnitude of the reduced form

estimates. For example, I use 5-digit industries to map firm-level data to sectors, but 5-digit

11I use the methodology developed by (Cattaneo et al., 2024) to residualize and estimate the confidence intervals for
the binned scatter plots.

25



industries may not correspond to the relevant market boundaries for competition.12 If, for example,

the relevant market is narrower, then the estimated coefficients will be larger in magnitude than

the true effect, as I show later when comparing data to model results. Furthermore, the regression

specification is likely misspecified. For example, firm dynamics might themselves depend on

concentration. If large firms in more concentrated sectors invest less in productivity-enhancing

activities, there will be more mean reversion in productivity among large firms, which will

mechanically generate a negative correlation between concentration and productivity growth.13

4.3 Calibration Strategy

To discipline the model, I calibrate the parameters governing the productivity process and firm

demographics using simulated method of moments (SMM). I match cross-sectional moments of

the distribution of firm sales share growth within industries, as well as industry-level moments of

concentration and productivity growth.

For each industry-year pair, I compute cross-sectional moments of the distribution of one-year

firm sales share growth, as well as industry-level moments of concentration, productivity growth,

and related aggregates. For each moment, I compute the statistic within each industry and

then take a sales-weighted average across industries (weights = total industry sales). Because all

moments are based on sales shares, the calibration is not affected by common industry shocks.

Results are robust to using simple medians instead of weights; the moments are quantitatively

similar. I collect parameters in the vector θ, which includes all primitives governing the productivity

process and the demographic block.

The productivity process (10) includes a common deterministic drift (g), a diffusion coefficient

(σ) that reflects the standard deviation of thin-tailed shocks, and a jump component that captures

the frequency and size of large shocks. For the jump distribution, I use an asymmetric Laplace

distribution:14

f J(x; µ+, µ´) =

$

’

&

’

%

µ+µ´

µ++µ´
e´µ´|x|, x ă 0,

µ+µ´

µ++µ´
e´µ+|x|, x ě 0,

12See Berry et al. (2019) for a comprehensive discussion of the role of market definition in empirical industrial
organization.

13In practice, however, this effect is unlikely to be very strong, as if it were the case, we would not observe the Pareto
tail in firm size. See (Gabaix, 2009) for the details.

14An empirical regularity observed in firm growth rates is that the unconditional distribution of firm growth rates
follows a double-exponential (Laplace) distribution; see Stanley et al. (1996).
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with mean 1
µ+

´ 1
µ´

and variance 1
µ2

´

+ 1
µ2
+

. As we saw in Section 3, higher-order moments like

skewness and kurtosis might interact with granular concentration in a non-trivial way. Allowing

for asymmetry in the jumps allows matching skewness, while kurtosis is controlled by the jump

intensity λ.15 Finally, the model includes an exogenous exit rate δ and a parameter η that governs

the speed of the firm size distribution’s traveling wave.

While all parameters affect the distribution of sales-share growth, we can think of certain

moments as being more sensitive to specific parameters, which aids in identification. Table 2

summarizes all the internally calibrated parameters. I discipline g using the median growth

rate of industry labor productivity and identify σ from the difference between the 90th and 10th

percentiles of sales share log changes, denoted by P90-P10. The left and right tail parameters

(µ+, µ´) are identified from tail-sensitive moments: the upper and lower extreme spreads P99-P50

and P50-P01 respectively. The jump intensity λ is identified from the Crow-Siddiqui kurtosis

measure P97.5´P2.5
P75´P25 ´ 2.91.16 The exit rate δ is set to match the average firm exit rate, while η is

calibrated to match the median four-firm concentration ratio (CR4). The elasticity of substitution ε

is fixed at 5 in the baseline, standard in the literature, and consistent with micro-level estimates

from Boppart et al. (2023) who estimate within-industry elasticities around 4.5 for manufacturing

and 5.5 for service industries.

Table 2 summarizes the calibration results. The tail index and the exit rate are estimated

separately, while the productivity process parameters are estimated jointly given αtail and δ. The

estimated productivity process features a jump roughly every three years, with left skewed jumps

that are larger on average than right-skewed jumps. The diffusion component is relatively small

compared to the jump component, indicating that large shocks play a significant role in firm

productivity dynamics. The tail index αtail is estimated at 3.96, implying Zipf’s law for sales shares

within industries.17

15A low rate λ makes jumps rare, leading to excess kurtosis.
16I use quantile based measures of the second, third, and fourth moments, rather than the standardized moments

(standard deviation, skewness, and excess kurtosis coefficients) as the latter are less sensitive to outliers.
17Since ε = 5, Zipf’s law for sales shares implies a tail index of αtail = ε ´ 1 = 4.
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Table 2: Calibration targets and estimated parameters

Parameter Description Value Main Identifying moment Data Model

g Common drift 0.019 TFP growth 1998-2019 0.013 0.014

σ Diffusion coeff. 0.025 P90–P10 of sales growth 0.45 0.46

λ Jump rate 0.36 P97.5´P2.5
P75´P25 ´ 2.91 of sales growth 3.26 3.18

µ+ Right jump tail 19.6 P99-P50 of sales growth 0.73 0.75

µ´ Left jump tail 15.0 P50-P01 of sales growth 0.84 0.83

αtail Tail thickness 3.96 CR4 0.46 0.46

δ Exogenous exit 0.034 Firm exit 0.033 0.033

Notes: “Data” are empirical targets; “Model” are simulated moments at the estimated parameters. g

is firm trend; σ is the diffusion coeff.; λ is jump arrival rate; (µ+, µ´) govern right/left jump tails;

αtail is the Pareto tail index; δ is the exit rate. Px denotes the xth percentile. CR4 is the four-firm sales

concentration ratio. Baseline elasticity ε = 5. Sample: Swedish firms by 5-digit SNI, 1998–2022.

5 Quantitative Results

This section evaluates the model’s quantitative performance at all levels of aggregation. Starting

at the micro level, I first assess how well the calibrated model matches the size-dependent

features of the firm growth distribution. Second, I examine whether the model can replicate the

empirical relationship between changes in concentration and future productivity growth at the

industry/sector level, and describe the dynamic impact of an idiosyncratic concentration shock on

sectoral productivity growth. Finally, I show that the granular drag has implications for aggregate

productivity growth in the medium to long run.

5.1 Firm Growth Distribution by Firm Size

How and why the firm growth distribution varies with size has been a long-standing puzzle in the

literature. Two empirical regularities stand out. First, the mean growth rate is roughly constant for

medium to large firms, while small firms tend to grow faster on average. Second, the volatility of

growth rates declines with size. These patterns are puzzling because they are difficult to reconcile

with the empirical regularity that the firm size distribution exhibits a Pareto tail. For a stochastic

process of proportional growth to have a Pareto tail, the ratio of the mean to the variance of growth

rates must be asymptotically constant with size (Gabaix, 2009). Firm granularity provides a simple
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answer to this puzzle, and can account for additional features of the growth distribution, such as

its skewness.
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Figure 2: Mean and standard deviation of one-year sales growth across current sales bins. Data correspond
to Swedish firms, 1998–2022, detrended with industry-year fixed effects. Model correspond to the calibrated
model using the parameters in Table 2.

I start by plotting how the first two moments of firm-level sales growth vary with size in the

data and the model. Figure 2 plots binned scatter plots by quantile of the sales distribution of mean

and standard deviation of sales growth rates. The left panel shows the mean growth profile, which

is roughly flat for medium to large firms in both the data and the model. In the data, small firms

exit more frequently, which mechanically raises the average growth rate of small surviving firms.

However, for medium to large firms, the exit hazard is low and approximately constant with size,

such that model and data are directly comparable.18 The right panel shows the volatility profile,

which declines with size in both the data and the model. In the latter, small firms are exposed

to their own idiosyncratic shocks as well as shocks to large firms, which amplifies their growth

volatility. As firms grow larger, they saturate their market of operation and are constrained by the

lower elasticity of substitution across sectors, such that identical idiosyncratic shocks translate into

smaller sales growth fluctuations. The model matches the level and slope of the volatility profile

well, showing that granularity can account for this important empirical regularity.

The mechanism behind the decline in volatility can also account for the size-dependent

skewness of firm growth rates. I consider the third standardized moment of sales growth rates

across firms within each size bin. This captures the asymmetry of the distribution of sales growth.

18See appendix B.2 for evidence on the exit hazard.
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Since the standard skewness measure is sensitive to outliers, I also consider an outlier-robust

measure, the Kelly-skewness, defined as (P90 + P10 ´ 2P50)/(P90 ´ P10). Figure 3 plots binned

scatter plots of firm-level sales growth skewness against size (sales) in the data. The left panel

shows the standard skewness, while the right panel shows the Kelly skewness, which is robust to

outliers. While the standard skewness measure declines fast with size, the Kelly skewness measure

shows a more gradual decline. This means that the change in skewness is driven by the tails of the

distribution.
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Figure 3: Standardized skewness and Kelly skewness of one-year sales growth across current sales bins.
Data correspond to Swedish firms, 1998–2022, detrended with industry-year fixed effects. Model correspond
to the calibrated model using the parameters in Table 2.

To further understand the decline in skewness, I plot different Kelly-skewness measures using

different tail definitions (10%, 5%, 2.5%, 1%) in panel (A) of figure 4.19 Left or right skewness

can come from the left or right tail. Panel (B) plots the left tail and panel (C) the right tail. We

see that the decline in skewness in the data is mostly driven by the right tail. The equivalent

Kelly-skewness measures, left tail, and right tail in the model are shown in panels (D), (E), and (F)

of figure 4, respectively. The model matches the size-dependent patterns of skewness well. The

right tail drive the decline in skewness with size, as small firms benefit from large positive growth

opportunities when dominant firms contract, whereas large firms have less room to grow as they

saturate their market. A notable difference is that the model generates a longer right tail for small

firms than in the data. The explanation is that in the model, the exit hazard is constant with size,

19Formally, the Kelly-skewness with tail threshold τ is defined as (P1´τ + Pτ ´ 2P50)/(P1´τ ´ Pτ), where Px is the
x-th percentile of the distribution.
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whereas in the data, small firms exit more frequently. In the model, some small firms benefit from

waiting until the large firms contract to capture a larger market share, leading to a longer right tail.
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(B) Left Tail Data
Left Tail Measure:

P50 - P10
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(C) Right Tail Data
Right Tail Measure:
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(D) Kelly Skewness Model
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(E) Left Tail Model
Left Tail Measure:

P50 - P10
P50 - P05
P50 - P025
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Figure 4: Kelly skewness and left/right-tail decomposition of one-year sales growth across current sales
bins. Kelly skewness with tail threshold τ is defined as (P1´τ + Pτ ´ 2P50)/(P1´τ ´ Pτ), where Px is the
xth percentile of the distribution. Panels (A)–(C) correspond to data; panels (D)–(F) to the model. Data
correspond to Swedish firms, 1998–2022, detrended with industry-year fixed effects. Model correspond to
the calibrated model using the parameters in Table 2.

Overall, granularity provides a natural explanation for these size-dependent patterns in the

growth distribution. Large firms have less room to grow within their sector, leading to a lower

volatility and skewness of growth rates, even when firm productivity follows a random walk.

These findings further reinforce the validity of assuming idiosyncratic random growth processes

for firm productivity, which serve as the foundation for the theoretical predictions for sectoral

dynamics which I examine next.

5.2 The Granular Drag at the Industry Level

As shown in section 4.2, there is strong empirical evidence that increases in concentration and

markup dispersion lead to lower future productivity growth at the industry/sector level. I now

31



assess whether the calibrated model can replicate this empirical relationship. To do so, I simulate

a stationary economy with a large number of sectors and estimate industry-level regressions. To

allow for distortions, I allow for i.i.d. taxes and subsidies on firm sales of ˘20% in the spirit of

Restuccia and Rogerson (2008). Note that these distortions are not calibrated to the data, but rather

chosen to generate variation in sales- and cost-based firm shares. Table 3 shows the results when

using the HHI gap based on sales minus costs. In the model with distortions, an increase in the

HHI gap leads to a decline in future productivity growth, roughly explaining 20% of the empirical

coefficient.

Table 3: Concentration and Productivity Growth: Swedish 5-digit Industries vs. Model

Data Model

ln(Prodt+5) ´ ln(Prodt) ln(Prodt+5) ´ ln(Prodt)

(1) (2) (3) (4)

HHIt sales -0.215**

(0.062)

-0.013

(0.065)

-0.059***

(0.006)

-0.060***

(0.005)

HHIt sales ´ HHIt costs -1.164***

(0.198)

-0.215***

(0.026)

ln(Prodt) -0.106***

(0.017)

-0.070***

(0.016)

-0.066***

(0.008)

-0.068***

(0.007)

Observations 7218 7218 200000 200000

R2 0.318 0.352 0.064 0.068

R2 Within 0.062 0.109 - -

Notes: Data corresponds to 5-digit SNI industries in Sweden, 1998-2022. Model

corresponds to a simulated cross-section of CES nests. ln(Prod) is log-labor

productivity, HHI (sales/costs) based on firm sales and personnel cost shares

within the industry. All data regressions include 2-digitˆyear fixed effects and SEs

clustered by 5-digit industry and year.

It is worth noting that the empirical estimates may be upward biased due to the definition

of industries in the data. Suppose that a “mega industry” in the data contains K underlying

true “micro industries” (CES nests) each with the same true concentration H. The measured

mega-industry concentration will then be Hmega = H ¨ h, where h =
řK

k=1(s
micro
k )2 captures a form

of “sub-industrial HHI” based on the relative shares smicro
k of each micro industry within the mega

industry. In this case, the empirical regression coefficient satisfies βempirical = βmodel/h, implying
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that the empirical estimate is upward biased by a factor 1/h. For example, if the mega industry

consists of K equal-sized sub-industries, then h = 1/K and the empirical coefficient is K times

larger than the theoretical one. The evidence is consistent with K « 5.

The model generates a quantitatively significant granular drag in the sectoral cross-section.

However, all theoretical derivations have been over an infinitesimal time horizon. It could be

that concentration and sectoral productivity respond immediately to idiosyncratic shocks, such

that the drag is only relevant at very short horizons. To assess the quantitative importance of

the granular drag over longer horizons, I next examine the transitional dynamics of productivity

growth following a concentration shock. Since the only shocks in the model are idiosyncratic

firm-level productivity shocks, concentration shocks arise endogenously from the aggregation of

these shocks. To trace the impulse response of sectoral productivity to a change in concentration,

I use local projections (Jordà, 2005). Specifically, I estimate the following equation for 5-year

horizons h = 0, 5, 10, . . . 140:

∆h ln Aj,t = βh ∆hHj,t + θh∆h

(
Hj,t ´ rHj,t

)
+ βA ln Aj,t´1 + αj + τt + ϵj,t+h, (24)

where ∆hXj,t = Xj,t+h ´ Xj,t denotes the h-step-ahead change in variable X, and αj and τt are

sector and time fixed effects, respectively. The coefficient βh captures the impulse response of the

h-period change in log productivity to a one-unit change in concentration, while θh captures the

effect of a change in the gap between sales- and cost-based HHIs.
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Figure 5: Model IRFs to One-Percentage-Point Increases in Sales HHI (Blue) and HHI Gap (Orange).
(A) Cumulative Productivity Response. (B) 5-Year Productivity Growth Response. HHI Gap refers to the
difference between sales- and cost-based HHIs.
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Panel (A) of figure 5 shows the sectoral productivity response to a one-percentage-point

increase in concentration. The blue line with circles corresponds to a one-percentage-point change

in sales-based HHI, holding the gap between sales- and cost-based HHIs constant, while the

orange line with squares isolates the effect of the HHI gap between sales- and cost-shares. A

one-percentage-point increase in sales concentration raises cumulative productivity by roughly 0.7

percentage points on impact, whereas a similar increase in the HHI gap generates an immediate

gain of about 2.2 percentage points. Both effects gradually decay over time: after around 50 years,

sectoral productivity is still about 0.2 and 0.5 percentage points higher, respectively. Panel (B)

reports the corresponding 5-year growth responses. The initial burst in productivity growth, most

pronounced for the HHI gap, reflects short-run reallocation gains as resources shift toward firms

operating below their socially optimal scale. Over time, however, higher concentration dampens

reallocation from idiosyncratic shocks, leading to a persistent slowdown in growth.

5.3 Aggregates and Persistence

Finally, I assess the implications of the granular drag for aggregate productivity growth. I assume

that there are 600 sectors in the economy, each with a Poisson number of firms with mean 140.

According to equation (17), aggregate productivity growth can be decomposed into a weighted

sum of sectoral productivity growth rates, where the weights are given by the sectoral sales shares:

γt = g ´
σ2

2
+ (ε ´ 1)

σ2

2

1 ´

N
ÿ

j=1

ωjHjt

 .

Thus, aggregate productivity growth inherits the drag from the sectoral level, and the relevant

measure of granularity is the sales-weighted average sectoral HHI,
řN

j=1 ωjHjt. I choose a

conservative calibration with ωj = 1/N for all sectors.20 Panel (A) of figure 6 plots binned scatter

plots of annualized 10-year aggregate productivity growth against the current sales-weighted

aggregate HHI. There is a clear linear relationship, with a 5 percentage point increase in the

sales-weighted aggregate HHI leading to a decline in 10-year productivity growth of about 1.1

percentage points. Panel (B) illustrates the decay of this effect over different horizons. It plots the

annualized absolute value of the regression coefficient of aggregate productivity growth on the

20In practice, the distribution of sectoral sales shares is substantially more skewed, and has a statistically insignificant
correlation with sectoral HHIs. The calibration here likely understates the dispersion of sales-weighted aggregate HHIs
and the quantitative importance of the granular drag at the aggregate level.
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sales-weighted aggregate HHI for horizons from 1 to 30 years. For example, the point at horizon

10 shows the same absolute value as in panel (A). The effect decays slowly over time, with a

5 percentage point increase in the sales-weighted aggregate HHI reducing 30-year productivity

growth by about 1.65 percentage points.

Panel (B) also plots the corresponding effect when controlling for the current level of aggregate

productivity. Since granularity is the only source of sector heterogeneity in the model, more

concentrated sectors are also more productive on average. Thus, controlling for current productivity

removes part of the variation in concentration that drives future growth. Nevertheless, the granular

drag remains quantitatively significant even after controlling for current productivity, with a 5

percentage point increase in the sales-weighted aggregate HHI reducing 10-year productivity

growth by about 0.5 percentage points.
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Figure 6: Model-Simulated Long-Run Effects of Aggregate Concentration on Productivity Growth.
(A) Binscatter of annualized 10-year aggregate productivity growth vs. sales-weighted aggregate
HHI. (B) Absolute value of the annualized effect of sales-weighted aggregate HHI on aggregate
productivity growth across horizons (1–50 years).

The analysis in this subsection focuses on the aggregate implications of the granular drag

under an efficient allocation of resources. As shown in the preceding theoretical results, the impact

of granularity on productivity growth is amplified in the presence of misallocation. Incorporating

these effects quantitatively is a natural next step, which I will address in a subsequent version of

the paper.
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6 Conclusion

This paper has developed a unified framework linking firm granularity to productivity growth.

Embedding idiosyncratic productivity shocks in a multi-sector model with finitely many firms,

I show that market concentration shapes expected productivity growth. When firms hold non-

negligible market shares, their shocks do not average out, and the reallocation of resources across

producers becomes imperfect. As a result, higher concentration mechanically reduces the gains

from micro-level reallocation, generating a granular drag on productivity growth.

The model generates substantial and persistent cross-sectional growth heterogeneity across

firms and aggregates, in line with the empirical evidence. At the firm level, granularity generates

size-dependent patterns of growth: large firms exhibit lower volatility and left-skewed growth,

while smaller firms display higher volatility and right-skewed growth as they benefit from

reallocations when dominant firms contract. At the sector level, concentration hampers reallocation

gains from idiosyncratic shocks. Distortions in resource allocation further amplify this mechanism

when the largest firms charge higher markups. Industries that become more concentrated, or

where sales are more concentrated than costs, subsequently experience slower productivity growth.

These predictions further aggregate up to the macro level, implying that economies with more

concentrated dominant sectors grow more slowly on average.

Consistent with these predictions, I find strong support for these mechanisms using firm- and

industry-level data from Sweden, the United States, and Europe. Across Swedish 5-digit industries,

a 10-percentage-point rise in the Herfindahl index of sales concentration is associated with about

a 3-percentage-point decline in five-year productivity growth. In the presence of distortions,

the theory predicts that the granular drag is amplified when sales concentration exceeds cost

concentration. Consistent with this, I find that a 10-percentage-point increase in the gap between

the Herfindahl indices of sales and costs predicts a decline of roughly 13 percentage points in

five-year productivity growth.

More broadly, the results suggest that micro-reallocation plays a central role in shaping

how economies grow. By linking firm granularity to expected productivity growth, this paper

highlights a granular drag channel through which market concentration influences medium- to

long-run performance. The framework provides a foundation for future work exploring how entry,

policy distortions, or endogenous innovation decisions interact with granular dynamics to shape

productivity and growth at both the sectoral and aggregate levels.
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A Theory Appendix

A.1 Itô’s Lemma

Throughout the paper, I frequently use Itô’s lemma to derive the stochastic differential equations

(SDEs) governing firm, sector, and economy-wide productivity dynamics. Intuitively, Itô’s lemma

is the stochastic analogue of the chain rule. When a variable evolves randomly, changes in a

transformation of that variable depend not only on the changes in the original variable, but also on

how randomness propagates through the transformation. For example, if firm productivity follows

a geometric Brownian motion, then the growth rate of its logarithm must correct for curvature of

the concave transformation (the ´ 1
2 σ2 term) because expectations and nonlinear transformations

do not commute. Itô’s lemma formalizes this correction for general transformations. In this paper,

it allows me to map micro-level stochastic processes for firms into laws of motion for aggregates

such as sectoral or economy-wide productivity indices.

Itô’s Lemma (with Jumps) Let Xt follow

dXt

Xt´

= µt dt + σt dWt + (eJt ´ 1) dQt,

where Wt is a standard Brownian motion, Qt is a Poisson process with intensity λ, and Jt is the

(possibly random) jump size. For any f P C2,1 (continous, twice differentiable in X and once in t),

Itô’s lemma states that

d f (Xt, t) =
(

Bt f + µtXt BX f + 1
2 σ2

t X2
t BXX f

)
dt + σtXt BX f dWt

+ [ f (Xt´ eJt , t) ´ f (Xt´ , t)] dQt. (A.1)

For example, if f (Xt, t) = ln Xt this yields:

d ln Xt =
(

µt ´ 1
2 σ2

t

)
dt + σt dWt + Jt dQt

The traditional Itô’s lemma is without jumps and can be recovered by setting the jump intensity λ

to zero.
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A.2 Proofs and Derivations for The Granular Drag in Efficient Economies

In this section I illustrate the main derivations of SDEs in the efficient allocation case. The SDE for

the productivity of firm i in sector j is given by:

dAijt

Aijt
= gdt + σdWijt +

(
eJijt ´ 1

)
dQijt

where g is the drift, σ is the diffusion, Wijt is a standard Brownian motion process, Jijt is the jump

size, and Qijt is a Poisson process with intensity λ. It will be useful to derive two related SDEs:

dAε´1
ijt

Aε´1
ijt

= (ε ´ 1)
(

g +
(ε ´ 2)σ2

2

)
dt + (ε ´ 1)σdWijt +

(
e(ε´1)Jijt ´ 1

)
dQijt

d ln Aijt =

(
g ´

σ2

2

)
dt + σdWijt + JijtdQijt

To derive the SDE for Ajt =
(
řNj

i=1 Aε´1
ijt

) 1
ε´1

, we first derive dAε´1
jt =

řNj
i=1 dAε´1

ijt . We have:

dAε´1
jt

Aε´1
jt

= (ε ´ 1)
(

g +
(ε ´ 2)σ2

2

)
dt + (ε ´ 1)σ

N
ÿ

i=1

sitdWijt +
N
ÿ

i=1

sit

(
e(ε´1)Jijt ´ 1

)
dQijt

where sijt = Aε´1
ijt /

(
řNj

k=1 Aε´1
kt

)
. It will be useful to note that

řN
i=1 sijtdWijt

d
=

a

HjtdWjt, where

Hjt =
řN

i=1 s2
it is the Herfindahl index. That is, sector level volatility is proportional to the square-

root of the sector sales-HHI, as in Gabaix (2011). Note that this is an artifact of ignoring sector

level shocks, which would induce additional sector level volatility, but are not relevant for the

main results of the paper. By applying Itô’s lemma, we can derive the SDE for Ajt:

dAjt

Ajt
=

(
g +

(ε ´ 2)
2

σ2 (1 ´ Hjt
))

dt + σ
b

HjtdWjt +

Nj
ÿ

i=1

[(
1 + sijt

(
e(ε´1)Jijt ´ 1

)) 1
ε´1

´ 1
]

dQijt.

Using Ito’s lemma for the log transformation again, we get:

d ln Ajt =

(
g +

ε ´ 2
2

σ2 (1 ´ Hjt
)

´
σ2

2
Hjt

)
dt + σ

b

HjtdWjt

+
1

ε ´ 1

Nj
ÿ

i=1

ln
(

1 + sijt

(
e(ε´1)Jijt ´ 1

))
dQijt

We are now ready to prove Proposition 1, and Proposition 2.
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Proof of Proposition 1 and Proposition 2. The focus of the paper is on expected productivity growth

γjt := Et[
1
dt d ln Ajt]. We have Et

[
dWjt

]
= 0 and Et

[
dQijt

]
= λdt, so taking expectations and using

independence of the process and of the jump arrival and jump size yields:

γjt = g ´
σ2

2
+

ε ´ 1
2

σ2 (1 ´ Hjt
)
+

λ

ε ´ 1

Nj
ÿ

i=1

Et

[
ln
(

1 + sijt

(
e(ε´1)Jijt ´ 1

))]

To recover the case without jumps, we set λ = 0, which yields equation (12). To recover the case

with jumps only, we set g = σ = 0, which yields equation (15). ■

The following proposition formalizes the preceding results, showing that in efficient economies,

expected sectoral productivity growth is always bounded between the monopolist and fully

diversified cases.

Proposition 6. Consider an efficient economy where firm productivity follows the process in (10). Then,

the expected sectoral productivity growth rate γjt = Et[d ln Ajt/dt] is bounded above by the growth rate in

the fully diversified γ8 case and below by that of a monopolist γ1:

γ1 ď γjt ă γ8,

and the reallocation term with a continuum of firms γ8 ´ γ1 is increasing in the within sector elasticity of

substitution ε.

Proof. The proof for the case without jumps is immediate from (12). For the case with jumps, the

result follows from the elementary inequality ex ě 1 + x for all x P R. ■

From Proposition 6, it follows that in efficient economies, the reallocation residual is always

positive.

A.2.1 Concentration and Growth over Finite Horizons

The results above characterize instantaneous log growth. Do these results change when considering

growth over an arbitrary horizon ∆t? To answer this, define

Γjt(∆t) :=
1

∆t
Et
[
ln Aj,t+∆t ´ ln Ajt

]
,
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the expected sectoral log growth between t and t + ∆t. Ranking Γjt(∆t) across sectors requires a

stronger notion of concentration than single-index measures such as the HHI. The relevant concept

is Lorenz concentration:

Definition 1 (Lorenz Concentration). Let s⃗jt and s⃗kt be two sorted share vectors (padding with zeros if

Nj ‰ Nk). We say that s⃗jt is more Lorenz-concentrated than s⃗kt, written s⃗jt ą s⃗kt, if

m
ÿ

i=1

sijt ě

m
ÿ

i=1

sikt for all m,

with strict inequality for some m.

Interpreting the ordered shares as an empirical distribution, Lorenz concentration is exactly

first-order stochastic dominance (FOSD) of that distribution.21 It implies higher values for standard

measures of concentration, including the HHI and top-m concentration ratios. With this notion of

concentration in hand, we can establish a negative relationship between concentration and growth

even over finite horizons.

Proposition 7. Consider an efficient economy where firm productivity follows a random growth process

(e.g., (10)) and there is no entry or exit. For any ∆t ą 0, consider two sectors j and k. If sector j is more

Lorenz concentrated than sector k, written s⃗jt ą s⃗kt, then

Γjt(∆t) ă Γkt(∆t).

Proof. A symmetric function f : Rn Ñ R is Schur-concave if for any two vectors x⃗, y⃗ P Rn such that

x⃗ is more Lorenz-concentrated than y⃗ (i.e., x⃗ ą y⃗), it holds that f (x⃗) ď f (⃗y). The expected growth

rate Γjt(∆t) is a symmetric function of the share vector s⃗jt, which is also strictly (Schur-)concave

for ε ą 1, such that if sector j is more Lorenz-concentrated than sector k, then Γjt(∆t) ă Γkt(∆t).

In the case of percentage growth over finite horizons, the elasticity of substitution ε needs to be

greater than 2 for Schur-concavity to hold. ■
21Mathematically, Lorenz concentration is referred to as the majorization order. See (Marshall et al., 2011) for a

textbook treatment.
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A.3 Entry, Exit, and Stationary Firm Productivity Distribution

Without a "stabilizing force" (Gabaix, 2009), random growth does not admit a stationary distribution:

firm productivities fan out over time.22 To address this, I introduce firm entry and exit. I first

characterize the stationary distribution with a continuum of infinitesimal firms, and then discuss

how granularity affects the realized cross-section with finitely many firms.

Suppose we are in the large–Nj limit with a continuum of infinitesimal firms. Firm productivity

follows the jump-diffusion process in (10). Each incumbent exits permanently at Poisson rate δ ą 0,

and new firms enter at Poisson rate ν ą 0 with initial productivity Aeeηt (or more generally from

an entry distribution Fe). Under some mild conditions on η, there exists a unique traveling-wave

distribution that is shape-invariant over time. Denote xijt := ln Aijt ´ ηt the productivity of firm i

in sector j relative to the traveling wave, so that xijt is stationary over time. Let ϕ(x) denote the

stationary density and write µx(η) := g ´ σ2

2 ´ η. The stationary density solves the Kolmogorov

forward equation (KFE):

0 = ´µx(η) ϕ1(x) +
σ2

2
ϕ2(x) + λ E[ϕ(x ´ J) ´ ϕ(x)] ´ δ ϕ(x), x P Rztxeu, (A.2)

with an inflow of mass at xe := ln Ae at rate ν. A standard implication of (A.2) is that the stationary

right tail is exponential in logs, or Pareto in levels. See Appendix D in Gabaix et al. (2016) for

the details for the same KFE equation (A.2) with jumps. Guessing ϕ(x)9e´αx away from xe and

substituting into (A.2) yields a mapping between the traveling-wave speed η and the tail index α

η = g +
α ´ 1

2
σ2 + λ

E
[
eαJ]´ 1

α
´

δ

α
. (A.3)

Here, η denotes the traveling-wave speed that sustains a growth. Intuitively, greater volatility σ2

or more right-skewed jumps (larger E[eαJ ]) thicken the tail (reduce α) unless offset by faster wave

speed η or higher exit δ. If the entry distribution is not degenerate, a further requirement is that

the entry tail is thinner than the stationary tail.

With finitely many firms, the empirical sectoral distribution fluctuates around the stationary

density.23 As the number of firms Nj increases, the empirical distribution converges to the

22For the stationary distribution to have a Pareto tail consistent with the data, the mean reversion induced by the
stabilizing force must be "small", such that the previous analysis without mean reversion remains a good approximation
for the upper tail. See Gabaix (1999, 2009) for details.

23One necessary modification with finitely many firms is that, to have on average N̄j incumbents, the rate of entry
ν = δN̄j.
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stationary density ϕ(x). If instead we let the number of sectors N go to infinity, the density

of sectoral productivities converges to a stationary distribution as well, which depends on the

stationary firm productivity distribution ϕ(x). In this cross-section of sectors, sectoral productivity

Ajt and concentration Hjt are positively associated.

Proof of Proposition 3. Define

Sjt ”

Nj
ÿ

i=1

A ε´1
ijt , Ajt = S 1/(ε´1)

jt , sijt =
A ε´1

ijt

Sjt
.

I model entry and exit as Poisson jumps of the sectoral aggregator:

• Entry: A marked Poisson random measure Qν(dt, dAe) with intensity ν and jump distribution

Fe,t(dAe) dt adds a mass A ε´1
e to Sjt at each jump.

• Exit: For each incumbent i, a Poisson process Qδ
i (dt) with intensity δ dt removes the mass

A ε´1
ijt when firm i exits.

Hence the law of motion for Sjt is

dSjt =

ż

A ε´1
e Qν(dt, dAe) ´

Nj
ÿ

i=1

A ε´1
ijt Qδ

i (dt). (A.4)

Applying Itô’s lemma (A.1) to (A.4) gives

d ln Sjt =

ż

ln
(

1 + A ε´1
e

Sjt´

)
Qν(dt, dAe) +

Nj
ÿ

i=1

ln
(

1 ´
A ε´1

ijt
Sjt´

)
Qδ

i (dt)

=

ż

ln
(

1 +
( Aet

Ajt

)ε´1
)

Qν(dt, dAe) +

Nj
ÿ

i=1

ln(1 ´ sijt) Qδ
i (dt), (A.5)

where I used Ajt = S 1/(ε´1)
jt and sijt = A ε´1

ijt /Sjt. Since ln Ajt =
1

ε´1 ln Sjt, taking expectations and

using Et[Qν(dt, dAe)] = ν Fe,t(dAe) dt and Et[Qδ
i (dt)] = δ dt, and the independence of jumps and

arrival times, the instantaneous expected growth rate γjt ” Et[
1
dt d ln Ajt] follows from (A.5):

γjt =
ν

ε ´ 1
Et

[
ln
(

1 +
( Aet

Ajt

)ε´1
)]

looooooooooooooooomooooooooooooooooon

Entry

+
δ

ε ´ 1

Nj
ÿ

i=1

ln(1 ´ sijt)

looooooooooomooooooooooon

Exit

,
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which proves Proposition 3. ■

Second-order exit approximation. For small shares, ln(1 ´ s) = ´s ´ 1
2 s2 + O(s3), hence

Exitjt =
δ

ε ´ 1

ÿ

i

ln(1 ´ sijt) « ´
δ

ε ´ 1
(
1 + 1

2Hjt
)

, Hjt =
ÿ

i

s2
ijt,

making the role of concentration explicit.

A.4 Sectoral Productivity Growth with Misallocation

Proposition 4. The sectoral productivity index can be written as:

Ajt =

(
řNj

i=1 Aε´1
ijt µ 1´ε

ij

) ε
ε´1

řNj
i=1 Aε´1

ijt µ´ε
ij

. (A.6)

Recall that

sijt :=
Aε´1

ijt µ 1´ε
ij

řNj
k=1 Aε´1

kjt µ 1´ε
kj

, rsijt :=
Aε´1

ijt µ´ε
ij

řNj
k=1 Aε´1

kjt µ´ε
kj

=
Lijt

řNj
k=1 Lkjt

,

and let Hjt :=
ř

i s2
ijt and rHjt :=

ř

i(rsijt)
2 be their HHI indices. Write

Njt :=
Nj
ÿ

i=1

Aε´1
ijt µ 1´ε

ij , Djt :=
Nj
ÿ

i=1

Aε´1
ijt µ´ε

ij , ln Ajt =
ε

ε ´ 1
ln Njt ´ ln Djt.

Since µij are constants, for each summand X(N)
ijt := Aε´1

ijt µ 1´ε
ij and X(D)

ijt := Aε´1
ijt µ´ε

ij ,

d ln X(N)
ijt = (ε ´ 1) d ln Aijt, d ln X(D)

ijt = (ε ´ 1) d ln Aijt.

Then we have sijt := X(N)
ijt /Njt and rsijt := X(D)

ijt /Djt. For any positive sum U =
ř

i Xi with weights

ϖi := Xi/U and independent Brownians, Itô’s formula for ln U gives

d ln U =
ÿ

i

ϖi d ln Xi +
1
2

(
ÿ

i

ϖib2
i ´

ÿ

i

ϖ2
i b2

i

)
dt,
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where bi is the diffusion loading in d ln Xi. Applying this identity to Njt (with bi = (ε ´ 1)σ and

weights sijt) yields

d ln Njt = (ε ´ 1)
(

g ´
σ2

2

)
dt + (ε ´ 1)σ

ÿ

i

sijtdWijt +
(ε ´ 1)2σ2

2

(
1 ´ Hjt

)
dt,

The same calculation for Djt (with weights rsijt) gives

d ln Djt = (ε ´ 1)
(

g ´
σ2

2

)
dt + (ε ´ 1)σ

ÿ

i

rsijtdWijt +
(ε ´ 1)2σ2

2

(
1 ´ rHjt

)
dt.

with rHjt :=
ř

i(rsijt)
2. Combining via ln Ajt =

ε
ε´1 ln Njt ´ ln Djt and taking expectations gives (18).

■

A.5 Sectoral Markup Dynamics

I derive here the SDE for sectoral markups under the diffusion specification in (10) with λ = 0 (no

jumps), and under the assumption that firm-level markups µij are heterogenous but constant over

time. The sectoral markup index is defined as

µjt =

 Nj
ÿ

i=1

sijtµ
´1
ij

´1

It will be convenient to rewrite this as

µjt =

řNj
i=1 Aε´1

ijt µ 1´ε
ij

řNj
i=1 Aε´1

ijt µ´ε
ij

.

Applying the results from Appendix A.4, we can write the SDE for sectoral markups as

d ln µjt = (ε ´ 1)2 σ2

2
(
rHjt ´ Hjt

)
dt + (ε ´ 1)σ

 Nj
ÿ

i=1

(
sijt ´ rsijt

)
dWijt

 .

As with sectoral productivity, note that
řNj

i=1

(
sijt ´ rsijt

)
dWijt

d
=

a

VjtdWµjt , where Vjt :=
řNj

i=1

(
sijt ´ rsijt

)2

and Wµjt is a standard Wiener process. Thus, the volatility of sectoral markup changes is

σµjt = (ε ´ 1)σ
a

Vjt.
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A.6 Aggregate Markup Dynamics

The aggregate markup index is defined as

µt =

 N
ÿ

j=1

ωjµ
´1
jt

´1

It will be convenient to define Xj = ωjµ
´1
jt , with d ln Xj = ´d ln µjt. Define rωj = Xj/

řN
k=1 Xk,

which are the sectoral cost shares. Applying Itô’s lemma, we can write

d ln(µ´1
t ) =

N
ÿ

j=1

rωj d ln Xj +
1
2

 N
ÿ

j=1

rωjσ
2
Xj

´

N
ÿ

j=1

( rωj)
2σ2

Xj

 dt

= (ε ´ 1)2 σ2

2

N
ÿ

j=1

rωj

(
Hjt ´ rHjt

)
dt ´ (ε ´ 1)σ

N
ÿ

j=1

rωj

b

VjtdWµjt

+
(ε ´ 1)2σ2

2

 N
ÿ

j=1

rωjVjt ´

N
ÿ

j=1

( rωj)
2Vjt

 dt

A.7 Aggregate Productivity Dynamics with Misallocation

Using the results from Appendix A.4, we can write the SDE for aggregate productivity under

misallocation as

d ln At =
ÿ

j=1

ωjd ln Ajt ´
ÿ

j=1

ωjd ln µjt + d ln(µt)

Substituting the expressions for d ln Ajt, d ln µjt, and d ln(µt) gives

d ln At =

(
g ´

σ2

2

)
dt + (ε ´ 1)

σ2

2

N
ÿ

j=1

ωj

(
1 ´ Hjt + (ε ´ 1)( rHjt ´ Hjt)

)
dt

´ (ε ´ 1)2 σ2

2

N
ÿ

j=1

ωj

(
rHjt ´ Hjt

)
dt

+ (ε ´ 1)2 σ2

2

N
ÿ

j=1

rωj

(
rHjt ´ Hjt

)
dt ´

(ε ´ 1)2σ2

2

 N
ÿ

j=1

rωjVjt ´

N
ÿ

j=1

( rωj)
2Vjt

 dt

+ Martingale Terms

Taking expectations and simplifying gives the expected aggregate productivity growth rate

9



under misallocation:

γt = g ´
σ2

2
+ (ε ´ 1)

σ2

2

N
ÿ

j=1

ωj
(
1 ´ Hjt

)
+ (ε ´ 1)2 σ2

2

N
ÿ

j=1

rωj

(
rHjt ´ Hjt

)

´
(ε ´ 1)2σ2

2

 N
ÿ

j=1

rωjVjt ´

N
ÿ

j=1

( rωj)
2Vjt


where Hjt =

ř

i s2
ijt, rHjt =

ř

i(rs)
2
ijt, and Vjt =

ř

i(sijt ´ rsijt)
2.

A.8 Endogenous Markups

I extend the market structure presented in Subsection 2.2 to allow for endogenous markups

following Atkeson and Burstein (2008). The nature of competition determines how firms internalize

their impact on sector aggregates, and thus equilibrium markups and sales shares. I consider

three scenarios that bracket the range of competitive forces: (i) monopolistic competition, where

markups are constant; (ii) Bertrand competition, where firms strategically choose prices; and

(iii) Cournot competition, where firms strategically choose quantities. For each of these market

structures, the perceived price elasticity of demand ζij takes the following form:

ζ(sij) =

$

’

’

’

’

’

&

’

’

’

’

’

%

ε under monopolistic competition

ε(1 ´ sij) + sij under Bertrand competition( 1
ε (1 ´ sij) + sij

)´1
under Cournot competition

Here sij is the sales share of firm i in sector j. In Bertrand and Cournot competition, larger sales

shares translate into higher markups, while under monopolistic competition markups remain

constant and passthrough is complete. Monopolistic competition provides a baseline with constant

markups, isolating the effects of granularity. In contrast, Cournot competition generates the

greatest markup variability across firm sizes among the three market structures.

Bertrand Competition The firm takes competitors’ prices tPkjuk‰i as given. The elasticity is

derived from the log-differentiated demand curve, recognizing that a firm’s price Pij affects the

10



sectoral price index Pj.

ζij ” ´
B ln Yij

B ln Pij

Given ln Yij = ´ε ln Pij + (ε ´ 1) ln Pj + C

ζij = ε ´ (ε ´ 1)
B ln Pj

B ln Pij

Since
B ln Pj

B ln Pij
=

Pij

Pj

BPj

BPij
=

(
Pij

Pj

)1´ε

= sij

ùñ ζij = ε ´ (ε ´ 1)sij = ε(1 ´ sij) + sij.

Cournot Competition The firm takes competitors’ quantities tYkjuk‰i as given. We derive the

inverse elasticity from the log-differentiated inverse demand curve, recognizing that a firm’s

quantity Yij affects sectoral output Yj.

1
ζij

” ´
B ln Pij

B ln Yij

Given ln Pij = ´
1
ε

ln Yij +

(
1
ε

´ 1
)

ln Yj

1
ζij

=
1
ε

´

(
1
ε

´ 1
)

B ln Yj

B ln Yij

Since
B ln Yj

B ln Yij
=

Yij

Yj

BYj

BYij
=

(
Yij

Yj

)(ε´1)/ε

= sij

ùñ
1
ζij

=
1
ε

´

(
1
ε

´ 1
)

sij =
1
ε
(1 ´ sij) + sij.

A.9 The Concentration Drag with Endogenous Markups

Proof. We postulate that

d ln µij = Et

[
1
dt

d ln µij

]
dt + σµij dWµij ,

where Wµij is a standard Wiener process with dWµij dWµkj = ρµijµkj dt, and σµij is the volatility of

the markup process. Furthermore, dWµij dWij = ρAijµkj dt.
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γjt = g ´
σ2

2
loomoon

Mean Productivity Change

+ (ε ´ 1)
σ2

2

(
1 ´ Hjt + (ε ´ 1)

(
rHjt ´ Hjt

))
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Reallocation due to technology

+ ε

Nj
ÿ

i=1

(rsij ´ sij)Et

[
1
dt

d ln µij

]
looooooooooooooooomooooooooooooooooon

Mean Markup Change

+
1
2

#

ε(ε ´ 1)

[
ÿ

i

sij σ2
µij

´
ÿ

i,k

sijskj σµij σµkj ρµijµkj

]
´ ε2

[
ÿ

i

rsij σ2
µij

´
ÿ

i,k

rsijrskj σµij σµkj ρµijµkj

]+
loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

Reallocation due to markup changes (Jensen/variance terms)

+ ε(ε ´ 1)

[
ÿ

i

(rsij ´ sij) σ σµij ρAijµij +
ÿ

i,k

(sijskj ´ rsijrskj) σ σµkj ρAijµkj

]
loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

Interaction between technology and markup changes (covariances)

.

■

B Data

B.1 Swedish Firm Data

B.1.1 Data Construction

This appendix describes the construction of the final Swedish firm-level sample from the Serrano

database. The raw data cover most legal forms in the Swedish business community, with full

coverage of limited liability companies. To ensure consistency and comparability over time, I apply

the following steps: Nominal flows such as sales, value added, personnel costs, production costs,

and other operating expenses are deflated using the GDP deflator. I drop observations with missing

or zero values for sales, employment, or value added. In addition, I exclude firm–years with

imputed accounts flagged in the Serrano database (codes 11, 51, 91, and 99). Firms are required to

have positive deflated sales above 500.000 SEK, positive deflated personnel and production costs,

positive deflated value added, and positive total assets. To avoid inactive entities, I further exclude

firms that never exceed one employee over their lifetime. To mitigate extreme reporting errors, I

winsorize key accounting ratios—value added to materials, capital, and labor; materials to capital
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and labor; and capital to labor—at the 1st and 99th percentiles within each year cell. Observations

flagged as outside this range are dropped. Following standard practice, I exclude sectors with large

public or financial components. Specifically, I drop two-digit SNI codes 35–39 (utilities), 64–66

(finance and insurance), 68 (real estate), 84–88 (public administration, education, and health), 90–96

(arts and other services), and 97–99 (households and extraterritorial organizations). Within each

year–industry, I compute firms’ market shares from nominal sales and costs shares from personnel

costs, and construct measures of concentration (Herfindahl–Hirschman Index and maximum

market share). Finally, I restrict the sample to 5-digit industries with at least 20 firms in each year.

After these restrictions, the final dataset consists of 2.629.458 firm-year observations. Table B.1

presents descriptive statistics for the main variables in the final sample.

Table B.1: Descriptive Statistics of the Swedish Firm-Level Data

Sales Value added Employment Personnel costs

N 2629458 2629458 2629458 2629458

Mean 24,766.7 7,229.2 11.3 5,513.9

SD 207,764.4 54,013.3 77.0 41,185.1

P25 2,256.2 854.0 2.0 661.0

P50 5,117.6 1,841.0 4.0 1,421.0

P75 13,263.9 4,518.0 8.0 3,492.0

P90 35,913.4 11,362.0 18.0 8,703.0

P95 70,224.7 20,906.0 32.0 16,018.0

P99 303,264.8 78,734.0 108.0 59,913.9

Max 54,028,144.8 9,473,085.0 20,699.0 8,372,000.0

Notes: Sales, value added, and personnel costs in 1000 SEK, deflated using the GDP deflator.

B.2 Exit Hazard

In the model, firm exit is driven by an exogenous Poisson process with constant hazard rate δ.

To assess the empirical plausibility of this assumption, I estimate the exit hazard as a function of

firm size using the Swedish firm-level data. The Serrano database includes information on firm

exits and re-registration of previously exited firms, allowing for accurate measurement of exit

events. Figure B.1 displays the estimated exit hazard rate by log-sales, controlling for year fixed
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effects. Controlling for industry fixed effects yields similar results. The exit hazard declines with

firm size, consistent with the notion that larger firms are less likely to exit the market. However,

for medium and large firms, the exit hazard is relatively flat, supporting the model’s assumption

of a constant hazard rate for established firms. (Haltiwanger et al., 2013) also document similar

patterns in U.S. data, where exit rates decline sharply for small firms but stabilize for larger firms,

with the exception that for firms with more than 500 employees, exit rates decline sharply to 1% or

lower. Of course, in the Swedish data, very large firms are much rarer than in the U.S. data, so the

flat hazard for large firms might reflect sample size limitations. A concern is that the measured

exit of large firms might reflect mergers and acquisitions, or changes in legal form, rather than

true market exit. In principle, the Serrano database tracks such events, for which I drop exits due

to mergers and acquisitions or registering of a new legal entity. To further test whether exits are

"true" exits, I regress the yearly change in 5-digit industry sales on the sales of large firms exiting

the previous year, as reported in Table B.2. The coefficient is large and close to 1, suggesting that

exits of large firms correspond to actual market exits rather than mergers or legal form changes.

2 1 0 1 2 3 4 5
Size (Log Sales)

0.00

0.05
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Figure B.1: Exit Hazard by Log-Sales, conditioning on year fixed effects
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Table B.2: Exit Hazard Regression Results

Salest ´ Salest´1

(1) (2)

Exit SalesTop 2
t´1 -0.852***

(0.076)

Entry SalesTop 2
t 0.967***

(0.072)

Exit SalesTop 4
t´1 -0.832***

(0.077)

Entry SalesTop 4
t 0.974***

(0.063)

Year FE x x

5-digit Industry FE x x

Observations 8964 8964

S.E. type by: industry by: industry

R2 0.154 0.157

R2 Within 0.046 0.050

SEs clustered by 5-digit industry and year.

B.3 U.S. Data from Ganapati (2021)

I use the U.S. industry-level data from Ganapati (2021) to complement the analysis in Section

4.2. The dataset combines multiple administrative sources to construct consistent industry-level

measures of concentration and productivity from 1972 to 2012. The main inputs are the U.S.

Census Bureau’s Economic Censuses, the NBER–CES Manufacturing Industry Database, and the

Bureau of Economic Analysis (BEA) industry accounts. Market concentration is measured using

the market sales shares of the four largest firms and, 5-factor total factor productivity. The unit of

observation is the 6-digit NAICS industry-year.

I regress 5-year productivity growth on current with industry and 2-digit times year fixed

effects. To control for misallocation, I use the labor share as an additional regressor. Table B.3

reports the results. When an industry is above its historical average concentration, it experiences

lower productivity growth over the next five years. The effect is economically significant: a

1-percentage-point increase in the CR4 index reduces five-year productivity growth by about
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0.27 percentage points. A high labor share is associated with higher future productivity growth,

consistent with the idea that misallocation dampens growth. The industry fixed effect might

mechanically lead to a negative correlation between concentration and growth if concentration

growth and productivity growth are positively correlated in the cross-section. To address this

concern, I include the lead of concentration as an additional regressor. The negative effect of

current concentration on future productivity growth remains significant, suggesting that the results

are not driven by mechanical mean reversion.

Table B.3: U.S. Industry-Level Regressions of 5-Year Productivity Growth on Concentration

∆5 ln(TFP)

(1) (2) (3) (4) (5) (6) (7) (8)

CR4t Sales -0.268*

(0.084)

-0.181*

(0.070)

0.039*

(0.015)

0.033

(0.021)

-0.337**

(0.073)

-0.254*

(0.070)

-0.190

(0.082)

-0.192

(0.086)

ln(Labor Share) 0.226*

(0.071)

-0.007

(0.017)

0.221*

(0.073)

-0.006

(0.016)

CR4t+5 Sales 0.250*

(0.070)

0.254**

(0.065)

0.237*

(0.076)

0.235*

(0.071)

2-Digit IndustryˆYear FE x x x x x x x x

Industry FE x x - - x x - -

Observations 2753 2753 2753 2753 2739 2739 2739 2739

R2 0.411 0.427 0.071 0.071 0.421 0.437 0.085 0.085

R2 Within 0.011 0.038 0.003 0.004 0.022 0.048 0.016 0.016

Unit of observation is 6-digit NAICS in the U.S. 1972-2012 in windows of 5-years from the replication

package of Ganapati (2021). CR4 based on firm sales shares within the industry. TFP is 5 factor TFP.

Standard errors clustered by industry and year in parentheses.

The TFP data is normalized to 1 in 1972, making cross-sectional comparisons including the

level of TFP difficult. These regressions might therefore be affected by division bias if there is both

measurement error in TFP and in sales. Click here to go back to Section 4.2.

B.4 CompNet

The CompNet dataset provides harmonized cross-country firm-level information aggregated to

the 2-digit NACE industry level for European economies. It covers measures of productivity,
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concentration, and cost structures for a broad set of EU countries. Following the same specification

as for the Swedish and U.S. data, I regress 5-year industry-level productivity growth on current

sales and cost HHIs, controlling for initial productivity and country-by-year fixed effects. As shown

in Table B.4, the gap in HHI between sales and costs enters negatively and significantly, while the

sales HHI alone shows no systematic effect. Quantitatively, a one-percentage-point increase in the

difference between the two measures predicts a reduction in 5-year productivity growth of about

0.5 percentage points, consistent with a granular drag operating through misallocation.

ln(Prodt+5) ´ ln(Prodt)

(1) (2) (3) (4)

HHIt sales -0.097

(0.126)

0.007

(0.125)

0.134

(0.077)

0.229*

(0.099)

HHIt gap (sales - costs) -0.762***

(0.180)

-0.493**

(0.139)

-0.556***

(0.107)

-0.434**

(0.136)

ln(Prodt) -0.198***

(0.026)

-0.042*

(0.015)

industry x x - -

CountryˆYear FE x x x x

Observations 9921 9921 9921 9921

R2 0.210 0.279 0.142 0.152

R2 Within 0.015 0.101 0.009 0.022

Industry refers to2-digit NACE.

Table B.4: CompNet Industry-Level Regressions of 5-Year Productivity Growth on Concentration

Click here to go back to Section 4.2.
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