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Outline for Today

Basic Measure Theoretic Probability

Conditional Probability

Independence
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Example

• Roll two fair dice

• What is the probability that the sum of the two dice is 10?

• What are all the possible outcomes?

• Intuitively the probability of a 10 is 3/36 = 1/12
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Example

• Roll two fair dice

• What is the probability that the sum of the two dice is 10?

• What are all the possible outcomes?

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
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Experiments, Sample Spaces, and Events

Experiment:
• Repeatable procedure with a well-defined set of possible outcomes

Sample Space:
• Set of all possible outcomes of an experiment
• Denoted by Ω

• ω ∈ Ω is a generic outcome

Event:
• Subset of the sample space A ⊆ Ω

• The complement of A is Ac = {ω ∈ Ω : ω /∈ A}
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σ-algebra

• Let Ω be a non-empty set

• F is a collection of subsets of Ω

• F is a σ-algebra if:
1. ∅ ∈ F
2. A ∈ F ⇒ Ac ∈ F
3. A1, A2, · · · ∈ F ⇒ ∪∞

i=1Ai ∈ F

• We write σ(A) to denote the smallest σ-algebra containing A

σ(A) = {∅, A,Ac,Ω}

• And P(Ω) to denote the collection of all subsets of Ω (the power set)
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Measurable Space and Measure

• A measurable space is a pair (Ω,F) where Ω is a set and F is a σ-algebra on Ω

• A measure is a function µ : F → [0,∞] such that:
1. µ(A) ≥ 0 for all A ∈ F

2. µ(∅) = 0

3. If A1, A2, · · · ∈ F are pairwise disjoint, then

µ (∪∞
i=1Ai) =

∞∑
i=1

µ(Ai)

• Example: the counting measure µ(A) = |A| for |Ω| < ∞
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Probability Measure and Space

• A probability measure is a measure P on a measurable space (Ω,F) such that:
1. P : F → [0, 1]

2. P(Ω) = 1

• The triplet (Ω,F ,P) is a probability space

• Example: |Ω| < ∞ and P(A) := |A|
|Ω|

• Example: Indicator function is a probability measure:

P(A) := 1A(ω) =

{
1 if ω ∈ A

0 if ω /∈ A
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Kolmogorov’s Probability Axioms

Let (Ω,F ,P) be a probability space where P is a probability measure that satisfies:

1. Non-negativity: P(A) ≥ 0 for all A ∈ F

2. Normalization: P(Ω) = 1

3. Countable Additivity: If A1, A2, · · · ∈ F are pairwise disjoint, then

P (∪∞
i=1Ai) =

∞∑
i=1

P(Ai)
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Basic Properties

1. P(Ac) = 1− P(A)

2. If A ⊆ B, then P(A) ≤ P(B)

3. P(A ∪B) = P(A) + P(B)− P(A ∩B)

We can extend (3) to n events:

P (∪n
i=1Ai) =

n∑
i=1

P(Ai)−
∑
i<j

P(Ai∩Aj)+
∑

i<j<k

P(Ai∩Aj∩Ak)−· · ·+(−1)n+1P(A1∩· · ·∩An)
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Boole’s Inequality

• Let (Ω,F ,P) be a probability space

• Let A1, A2, · · · ∈ F be a countable sequence of events

• Then P (∪∞
i=1Ai) ≤

∑∞
i=1 P(Ai)

Sketch of Proof:
• Define B1 = A1, B2 = A2 \B1, B3 = A3 \ (B1 ∪B2), . . . , Bn = An \ ∪n−1

i=1 Bi

• Then B1, B2, . . . are pairwise disjoint

• Furthermore ∪∞
i=1Ai = ∪∞

i=1Bi (why?) and Bi ⊆ Ai

• Then P (∪∞
i=1Ai) = P (∪∞

i=1Bi) =
∑∞

i=1 P(Bi) ≤
∑∞

i=1 P(Ai)
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Continuity of Probability Measure

Given a probability space (Ω,F ,P):

• Let A1, A2, . . . be a sequence of events such that A1 ⊆ A2 ⊆ . . .

• This is called an increasing sequence of events, define limn→∞An = ∪∞
i=1Ai

• Then P(∪∞
i=1Ai) = limn→∞ P(An)

Similarly,
• Let A1, A2, . . . be a sequence of events such that A1 ⊇ A2 ⊇ . . .

• This is called a decreasing sequence of events, define limn→∞An = ∩∞
i=1Ai

• Then P(∩∞
i=1Ai) = limn→∞ P(An)
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Proof Sketch

Let (Ω,F ,P) be a probability space and A1, A2, . . . be an increasing sequence of events
• Define B1 = A1, B2 = A2 \A1, B3 = A3 \A2, . . . , Bn = An \An−1

• Then B1, B2, . . . are pairwise disjoint

• And An = ∪n
i=1Bi

• By countable additivity,

lim
n→∞

P(An) = lim
n→∞

n∑
i=1

P(Bi) = P (∪∞
i=1Bi) = P (∪∞

i=1Ai)
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Conditional Probability
• Let (Ω,F ,P) be a probability space

• Let A,B ∈ F be events such that P(B) > 0

• Question: what is the probability that A occurs given that B has occurred?
Ω

A B
A ∩ B

• The conditional probability of A given B is defined as

P(A|B) =
P(A ∩B)

P(B)
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Example

• Let |Ω| < ∞ and P(A) = |A|
|Ω|

• Then
P(A|B) =

P(A ∩B)

P(B)
=

|A ∩B|/|Ω|
|B|/|Ω|

=
|A ∩B|
|B|

• In fact, one can show that P(·|B) : F → [0, 1] is a probability measure
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Application: Simultaenous Events

• Suppose we care about the probability that both A and B occur: P(A ∩B)

• We can use the definition of conditional probability to write

P(A ∩B) = P(A|B)P(B)

• Generalizes:

P(A ∩B ∩ C) = P(A|B ∩ C)P(B ∩ C) = P(A|B ∩ C)P(B|C)P(C)

• And so on to n events (see next slide)
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The Multiplication Law

• Let A1, A2, . . . , An ∈ F be events

• Define A0 = Ω

• Then

P(∩n
i=1Ai) =

n∏
i=1

P(Ai| ∩i−1
j=0 Aj)
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Preamble to Bayes’ Theorem and Law of Total Probability

• Let A,B ∈ F

A

B

P (B|A)

Bc

P (Bc|A)

P (A)

Ac

B

P (B|Ac)

Bc

P (Bc|Ac)

P (Ac)

• P(B) = P(A)P(B|A) + P(Ac)P(B|Ac)

• P(B|A) = P(B)P(A|B)
P(A)
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Partitions (of the Sample Space)

• Consider a probability space (Ω,F ,P)

• The set {A1, A2, . . . , An} ∈ F is a partition of Ω if the following conditions hold:

1. (Exhaustive) ∪n
i=1Ai = Ω

2. (Mutual Exclusivity) Ai ∩Aj = ∅ for all i ̸= j

3. (Non-zero probability) P(Ai) > 0 for all i

• Note that 3. is not strictly necessary, but convenient
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Law of Total Probability

• Let {A1, A2, . . . , An} be a partition of Ω

• Then for any event B ∈ F , we have

P(B) =

n∑
i=1

P(B|Ai)P(Ai)
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Proof of the Law of Total Probability

• Let {A1, A2, . . . , An} be a partition of Ω

P(B) = P(B ∩ Ω)

= P(B ∩ ∪n
i=1Ai)

= P(∪n
i=1B ∩Ai)

=

n∑
i=1

P(B ∩Ai)

=

n∑
i=1

P(B|Ai)P(Ai)

• the thrid equality follows from the distributive property of the intersection over the union:

B ∩ ∪n
i=1Ai = ∪n

i=1B ∩Ai
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Bayes’ Theorem

• Let A,B ∈ F be events such that P(A),P(B) > 0

• Let {A1, A2, . . . , An} be a partition of Ω

• Then:

1. P(A|B) = P(B|A)P(A)
P(B)

2. P(A|B) = P(B|A)P(A)
P(B|A)P(A)+P(B|Ac)P(Ac)

3. P(Aj |B) =
P(B|Aj)P(Ai)∑n
i=1 P(B|Ai)P(Ai)

Monty Hall Example
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Independence
• Let (Ω,F ,P) be a probability space

• Let A,B ∈ F be events

• A and B are independent if and only if

P(A ∩B) = P(A)P(B)

• Sometimes written as A ⊥ B

• Intuitively, if A is independent of B:

P(A|B) = P(A)

or
P(A ∩B)

P(B)
= P(A)
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Pairwise and Mutual Independence

• Let (Ω,F ,P) be a probability space

• Let A1, A2, . . . , An ∈ F be events

• What does it mean to say that {A1, A2, . . . , An} are independent?

• The events are pairwise independent if and only if for all i ̸= j

P(Ai ∩Aj) = P(Ai)P(Aj)

• The events are mutually independent if and only if for all I ⊆ {1, 2, . . . , n}

P(∩i∈IAi) =
∏
i∈I

P(Ai)
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Monty Hall Problem

• You are a contestant on a game show hosted by Monty Hall

• There are three (ex-ante identical) doors

• Behind one of the doors is a car, behind the other two are goats

• Monty asks you to choose a door

• Then, Monty opens another door revealing a goat

• You are given the option to switch doors

• Should you switch?
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Monty Hall Problem

• Suppose the three doors are numbered 1, 2, and 3

• Let us define the following events:
• B1, B2, B3: the car is behind door 1, 2, or 3

• M1,M2,M3: Monty opens door 1, 2, or 3

• Suppose (WLOG) you choose door 1 and Monty opens door 2

• Doors 1 and 3 are now the only possibilities

• You should switch if P(B3|M2) > P(B1|M2)
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Monty Hall Problem

• Let’s use Bayes’ Theorem to calculate P(B1|M2)

P(B1|M2) =
P(M2|B1)

P(M2|B1)P(B1) + P(M2|B2)P(B2) + P(M2|B3)P(B3)
P(B1)

• The doors are ex-ante identical: P(B1) = P(B2) = P(B3) = 1/3

• Monty will never open the door with the car: P(M2|B1) = 1/2, P(M2|B2) = 0,
P(M2|B3) = 1

• Therefore, P(B3|M2) = 2/3

• P(B1|M2) = 1− P(B3|M2) = 1/3

• You should switch!
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