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Random Varibles – Informal Definition

A random variable (RV)...
• is a numerical quantity

• is stochastic, i.e. the value it takes is uncertain

• if the values are known with certainty, it is a deterministic (or degenerate) RV
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Example
• Let X be the sum of the roll of two fair dice (clearly X ∈ {2, 3, . . . , 12} ⊂ R)

• What is P(X = 10)?

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

• {X = 10} = {ω ∈ Ω : X(ω) = 10} = {(4, 6), (5, 5), (6, 4)}

• So using P(A) = |A|
|Ω| , P(X = 10) = 3

36 = 1
12

• Easy to extend to X ≤ 10 : P(X ≤ 10) = P({ω ∈ Ω : X(ω) ≤ 10}) = 33
36 = 11

12
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A first definition

• Given a probability space (Ω,F ,P)

• a random variable is a function X : Ω → R with the property that:

Ax = {ω ∈ Ω : X(ω) ≤ x} ∈ F ∀x ∈ R

• That is, Ax is an event for all x ∈ R
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Borel σ-algebra

• The Borel σ-algebra on R is the smallest σ-algebra containing all open intervals

• Denoted by B :
B = σ({(a, b) : a, b ∈ R})

• Note that sets of the form [a, b], (a, b], [a, b) are also in B

• It is hard to construct a set that is not in B

• Extends to higher dimensions
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Measurable Functions

• Consider the measurable spaces (Ω,F), and (R,B)

• A function f : Ω → R is F-measurable if

f−1(B) = {ω ∈ Ω : f(ω) ∈ B} ∈ F ∀B ∈ B

• Intuition: We can determine wich outcomes map to the elements of B ∈ B
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Random Variables as Measurable Functions

• For a probability space (Ω,F ,P), and a measurable space (R,B)

• A random variable X is a F-measurable function X : Ω → R

• The law of a random variable is the probability measure induced by X:

PX(B) = P(X ∈ B) = P({ω ∈ Ω : X(ω) ∈ B})

• Note that PX is a probability measure on (R,B)

• It is enought to specify PX for all B ∈ B of the form (−∞, x]:
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Cumulative Distribution Function

• The cumulative distribution function (CDF) of a random variable X is defined as

FX(x) = P(X ≤ x)

and satisfies the following properties:

1. FX(x) is non-decreasing: x ≤ y ⇒ FX(x) ≤ FX(y)

2. FX(x) is right-continuous: limy↓x FX(y) = FX(x)

3. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1

• Uniqueness: A CDF uniquely determines the RV
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Proof of Right-Continuity

• Want to prove that limy↓x FX(y) = FX(x)

• Let Ax = {ω ∈ Ω : X(ω) ≤ x}

• Take a decreasing sequence xn ↓ x

• Note that Ax = ∩∞
i=1Axi

• and Axn is a decreasing sequence of sets

• By continuity of probability measures (see lecture 1),

lim
n→∞

FX(xn) = lim
n→∞

P(Axn) = P(∩∞
i=1Axi) = P(Ax) = FX(x)
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Probabilities from CDFs

Consider x, y ∈ R with x < y, FX the CDF of X, and FX(x−) = limz↑x FX(z)

1. P(X > x) = 1− FX(x)

2. P(X = x) = FX(x)− FX(x−)

3. P(X < x) = FX(x−)

4. P(x < X ≤ y) = FX(y)− FX(x)
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Support of a Random Variable

• Take a non-negative real-valued function, f

• The support of f is the set of the real line where f is strictly positive:

{x ∈ R : f(x) > 0}

• We will refer to the support of a random variable X as the support of fX

• i.e. the set of values/intervals that X can take with positive probability
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Discrete Random Variables
• A random variable X is discrete if it takes countably many values {x1, x2, . . .}

• The probability mass function (PMF) of X is defined as

fX(x) = P(X = x)

= P(X ≤ x)− P(X < x)

= FX(x)− FX(x−)

• The CDF can be recovered as

FX(x) =
∑
u≤x

fX(u)

• The PMF satisfies the following properties:
1. fX(x) ∈ [0, 1]

2.
∑

x fX(x) = 1
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Example: Two fair dice

• Let X be the sum of the roll of two fair dice

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

• What are the PMF and CDF of X?
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Example: Two fair dice
• Let X be the sum of the roll of two fair dice
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Continuous Random Variables: Motivation

• So far, we have considered random variables that take countably many values

• In many cases, it is more natural to consider RVs that can take any value in an interval

• In practice, measurement is limited by precision

• Consider measuring the height of a person with an ever more precise ruler

• We also model as continuous, variables that take many discrete values like income,
wealth, etc.
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Continuous Random Variables
• A random variable X is continuous if it has a CDF FX(x) that can be written as

FX(x) =

∫ x

−∞
fX(u)du

for some function integrable function fX(x)

• The probability density function (PDF) of X is defined as

fX(x) =
d

dx
FX(x)

= lim
h→0

FX(x+ h)− FX(x)

h

= lim
h→0

P(x < X ≤ x+ h)

h

• The PDF satisfies the following properties:
1. fX(x) ≥ 0

2.
∫∞
−∞ fX(x)dx = 1
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Example: Gaussian Random Variable
• Let X ∼ N(0, 1) be a standard normal random variable

fX(x) =
1√
2π

e−x2/2
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Any non-negative integrable function can be a PDF

• Let g : R → R+ be a continuous, integrable, and non-negative function

• Then
∫∞
−∞ g(x)dx = K > 0

• Define fX(x) = 1
K g(x)

• Then fX(x) is a PDF
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Expectation

• Suppose X is a discrete random variable with PMF fX(x)

• The expectation of X is defined as

E[X] =
∑
x

xfX(x)

• For a continuous random variable with PDF fX(x), the expectation is defined as

E[X] =

∫ ∞

−∞
xfX(x)dx

• Technically, the expecation might not exist

• When writing E[X], we assume E[|X|] < ∞
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Law of the Unconscious Statistician (LOTUS)

• Let g : R → R be a nice function1

• Consider a probability space (Ω,F ,P) and a random variable X : Ω → R

• Then g(X) is a random variable

• (LOTUS) The expectation of g(X) is given by

E[g(X)] =
∑
x

g(x)fX(x) if X is discrete

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx if X is continuous

• Again, we are assuming that E[|g(X)|] < ∞

1g : R → R is a function for which the inverse image of any Borel set is a Borel set, i.e. g is B-measurable
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Unified Notation: The Riemann-Stieltjes Integral

• The Riemann-Stieltjes integral is a generalization of the Riemann integral

• Let X be a random variable with CDF FX(x)

• The expectation of function g(X) is defined as (if it exists):

E[g(X)] =

∫ ∞

−∞
g(x)dFX(x)

• For the case where the distribution is either discrete or continuous:∫ ∞

−∞
g(x)dFX(x) =

{∑
x g(x)fX(x) if X is discrete∫∞

−∞ g(x)fX(x)dx if X is continuous

• Also works for mixed distributions, and is a precursor to the Lebesgue integral
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Mean of Two Dice
The mean of the sum of two dice is given by

E[X] =
∑
x

xfX(x) = 2 · 1

36
+ 3 · 2

36
+ . . .+ 12 · 1

36
= 7
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Linearity of Expectation

• Expectations are just integrals!

• Let X and Y be random variables, and a, b ∈ R

• Then E[aX + bY ] = aE[X] + bE[Y ]

• More generally, for any random variables X1, X2, . . . , Xn and constants a1, a2, . . . , an

• E[a1X1 + a2X2 + . . .+ anXn] = a1E[X1] + a2E[X2] + . . .+ anE[Xn]
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Variance and Higher Moments
• The variance of X is defined as

Var(X) = E[(X − E[X])2] = E[X2]− E[X]2

• Note that
Var(aX) = a2Var(X)

• The k-th moment of X is defined as

E[Xk] =

∫ ∞

−∞
xkdFX(x)

• The k-th central moment of X is defined as

E[(X − E[X])k] =

∫ ∞

−∞
(x− E[X])kdFX(x)
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Skewness

• Skew coefficient: Skew(X) = E[(X−E[X])3]

Var(X)3/2

Figure: Source: Wikipedia

25 / 32



Kurtosis
• Kurtosis: Kurt(X) = E[(X−E[X])4]

Var(X)2
− 3

Figure: Distributions with mean zero and variance 1 distributions but different kurtosis. Source:
Wikipedia
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Jensen’s Inequality

• Let X be a random variable and g : R → R a convex function with g(E[X]) < ∞

• Then g(E[X]) ≤ E[g(X)]

• If g is concave, then the inequality is reversed
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Proof

g : R → R is convex if for any x0 ∈ R, we can find m such that g(x) ≥ g(x0) +m(x− x0)

E[g(X)] =

∫ ∞

−∞
g(x)dFX(x) ≥

∫ ∞

−∞
[g(E[X]) +m(x− E[X])] dFX(x)

= g(E[X]) +m

∫ ∞

−∞
(x− E[X])dFX(x)

= g(E[X])
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Examples

• Linear: E[aX + b] = aE[X] + b

• Quadratic: E[X2] ≥ E[X]2

• Geometric Mean: E[eX ] ≥ eE[X]

• Reciprocal: E[1/X] ≥ 1/E[X]
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Moment Generating Function

• The moment generating function (MGF) of a random variable X is defined as

MX(t) = E[etX ] =

∫ ∞

−∞
etxdFX(x)

if the integral exists for t ∈ (−h, h) for some h > 0

• The MGF (if it exists) uniquely determines the distribution of X

• The k-th moment of X is given by:

E[Xk] =
dk

dtk
MX(t)

∣∣∣∣
t=0
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Proof Sketch

• Recall from the definition of exponential

E
[
etX

]
= E

[ ∞∑
k=0

(tX)k

k!

]

=

∞∑
k=0

tk

k!
E
[
Xk

]
• Hence

dn

dtn
MX(t) = E[Xn] +

∞∑
k=n+1

tk

k!
E[Xk]
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Characteristic Function

• The characteristic function (CF) of a random variable X is defined as

ϕX(t) = E[eitX ] =

∫ ∞

−∞
eitxdFX(x)

where i =
√
−1

• The CF always exists and uniquely determines the distribution of X
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