Lecture 2: Random Variables

PhD Mathematics II: Probability

Juan Llavador Peralt

IIES

November 5, 2024

Outline

Random Variables

Discrete Random Variables

Continuous Random Variables

Moments and Moment Generating Functions

Random Varibles – Informal Definition

A random variable (RV)...

- is a numerical quantity
- is **stochastic**, i.e. the value it takes is uncertain
- if the values are known with certainty, it is a deterministic (or degenerate) RV

Example

- Let X be the sum of the roll of two fair dice (clearly $X \in \{2, 3, \dots, 12\} \subset \mathbb{R}$)
- What is $\mathbb{P}(X=10)$?

- ${X = 10} = {\omega \in \Omega : X(\omega) = 10} = {(4,6), (5,5), (6,4)}$
- So using $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$, $\mathbb{P}(X = 10) = \frac{3}{36} = \frac{1}{12}$
- Easy to extend to $X \leq 10$: $\mathbb{P}(X \leq 10) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \leq 10\}) = \frac{33}{36} = \frac{11}{12}$

A first definition

- Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- a random variable is a function $X:\Omega\to\mathbb{R}$ with the property that:

$$A_x = \{ \omega \in \Omega : X(\omega) \le x \} \in \mathcal{F} \quad \forall x \in \mathbb{R}$$

• That is, A_x is an event for all $x \in \mathbb{R}$

Borel σ -algebra

- The Borel σ -algebra on $\mathbb R$ is the smallest σ -algebra containing all open intervals
- Denoted by \mathcal{B} :

$$\mathcal{B} = \sigma(\{(a,b) : a,b \in \mathbb{R}\})$$

- ullet Note that sets of the form [a,b], (a,b], [a,b) are also in ${\cal B}$
- It is hard to construct a set that is not in \mathcal{B}
- Extends to higher dimensions

Measurable Functions

- Consider the **measurable spaces** (Ω, \mathcal{F}) , and $(\mathbb{R}, \mathcal{B})$
- A function $f:\Omega\to\mathbb{R}$ is \mathcal{F} -measurable if

$$f^{-1}(B) = \{ \omega \in \Omega : f(\omega) \in B \} \in \mathcal{F} \quad \forall B \in \mathcal{B}$$

• Intuition: We can determine wich outcomes map to the elements of $B \in \mathcal{B}$

Random Variables as Measurable Functions

- For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and a measurable space $(\mathbb{R}, \mathcal{B})$
- A random variable X is a \mathcal{F} -measurable function $X:\Omega\to\mathbb{R}$
- The law of a random variable is the probability measure induced by X:

$$\mathbb{P}_X(B) = \mathbb{P}(X \in B) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\})$$

- Note that \mathbb{P}_X is a probability measure on (\mathbb{R},\mathcal{B})
- It is enought to specify \mathbb{P}_X for all $B \in \mathcal{B}$ of the form $(-\infty, x]$:

Cumulative Distribution Function

ullet The cumulative distribution function (CDF) of a random variable X is defined as

$$F_X(x) = \mathbb{P}(X \le x)$$

and satisfies the following properties:

- 1. $F_X(x)$ is non-decreasing: $x \leq y \Rightarrow F_X(x) \leq F_X(y)$
- 2. $F_X(x)$ is right-continuous: $\lim_{y\downarrow x} F_X(y) = F_X(x)$
- 3. $\lim_{x\to-\infty} F_X(x) = 0$ and $\lim_{x\to\infty} F_X(x) = 1$
- Uniqueness: A CDF uniquely determines the RV

Proof of Right-Continuity

- Want to prove that $\lim_{y\downarrow x} F_X(y) = F_X(x)$
- Let $A_x = \{\omega \in \Omega : X(\omega) \le x\}$
- Take a decreasing sequence $x_n \downarrow x$
- Note that $A_x = \bigcap_{i=1}^{\infty} A_{x_i}$
- and A_{x_n} is a decreasing sequence of sets
- By continuity of probability measures (see lecture 1),

$$\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}(A_{x_n}) = \mathbb{P}(\cap_{i=1}^{\infty} A_{x_i}) = \mathbb{P}(A_x) = F_X(x)$$

Probabilities from CDFs

Consider
$$x, y \in \mathbb{R}$$
 with $x < y$, F_X the CDF of X , and $F_X(x^-) = \lim_{z \uparrow x} F_X(z)$

1.
$$\mathbb{P}(X > x) = 1 - F_X(x)$$

2.
$$\mathbb{P}(X = x) = F_X(x) - F_X(x^-)$$

3.
$$\mathbb{P}(X < x) = F_X(x^-)$$

4.
$$\mathbb{P}(x < X \le y) = F_X(y) - F_X(x)$$

Support of a Random Variable

- ullet Take a non-negative real-valued function, f
- The **support** of f is the set of the real line where f is strictly positive:

$$\{x \in \mathbb{R} : f(x) > 0\}$$

- ullet We will refer to the support of a random variable X as the support of f_X
- ullet i.e. the set of values/intervals that X can take with positive probability

Discrete Random Variables

- ullet A random variable X is **discrete** if it takes countably many values $\{x_1, x_2, \ldots\}$
- ullet The probability mass function (PMF) of X is defined as

$$f_X(x) = \mathbb{P}(X = x)$$

$$= \mathbb{P}(X \le x) - \mathbb{P}(X < x)$$

$$= F_X(x) - F_X(x^-)$$

The CDF can be recovered as

$$F_X(x) = \sum_{u \le x} f_X(u)$$

- The PMF satisfies the following properties:
 - 1. $f_X(x) \in [0,1]$
 - 2. $\sum_{x} f_X(x) = 1$

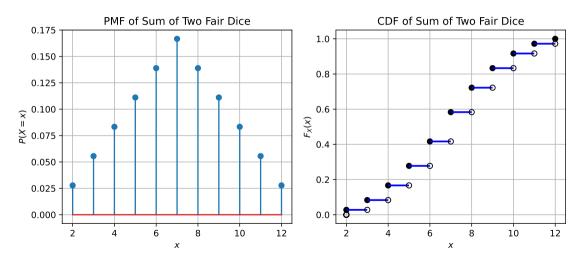
Example: Two fair dice

• Let X be the sum of the roll of two fair dice

• What are the PMF and CDF of X?

Example: Two fair dice

• Let X be the sum of the roll of two fair dice



Continuous Random Variables: Motivation

- So far, we have considered random variables that take countably many values
- In many cases, it is more natural to consider RVs that can take any value in an interval
- In practice, measurement is limited by precision
- Consider measuring the height of a person with an ever more precise ruler
- We also model as continuous, variables that take many discrete values like income, wealth, etc.

Continuous Random Variables

• A random variable X is **continuous** if it has a CDF $F_X(x)$ that can be written as

$$F_X(x) = \int_{-\infty}^x f_X(u) du$$

for some function integrable function $f_X(x)$

• The **probability density function** (PDF) of X is defined as

$$f_X(x) = \frac{d}{dx} F_X(x)$$

$$= \lim_{h \to 0} \frac{F_X(x+h) - F_X(x)}{h}$$

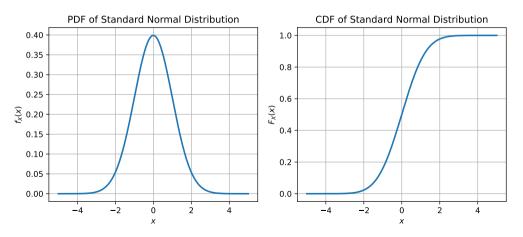
$$= \lim_{h \to 0} \frac{\mathbb{P}(x < X \le x+h)}{h}$$

- The PDF satisfies the following properties:
 - 1. $f_X(x) \ge 0$
 - $2. \int_{-\infty}^{\infty} f_X(x) dx = 1$

Example: Gaussian Random Variable

• Let $X \sim N(0,1)$ be a standard normal random variable

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$



Any non-negative integrable function can be a PDF

- ullet Let $g:\mathbb{R} o \mathbb{R}_+$ be a continuous, integrable, and non-negative function
- Then $\int_{-\infty}^{\infty} g(x)dx = K > 0$
- Define $f_X(x) = \frac{1}{K}g(x)$
- ullet Then $f_X(x)$ is a PDF

Expectation

- Suppose X is a **discrete** random variable with PMF $f_X(x)$
- The **expectation** of *X* is defined as

$$\mathbb{E}[X] = \sum_{x} x f_X(x)$$

• For a **continuous** random variable with PDF $f_X(x)$, the expectation is defined as

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

- Technically, the expecation might not exist
- When writing $\mathbb{E}[X]$, we assume $\mathbb{E}[|X|] < \infty$

Law of the Unconscious Statistician (LOTUS)

- Let $g: \mathbb{R} \to \mathbb{R}$ be a nice function¹
- Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$
- Then g(X) is a random variable
- (LOTUS) The expectation of g(X) is given by

$$\mathbb{E}[g(X)] = \sum_x g(x) f_X(x) \quad \text{if X is discrete}$$

$$\mathbb{E}[g(X)] = \int_{-\infty}^\infty g(x) f_X(x) dx \quad \text{if X is continuous}$$

• Again, we are assuming that $\mathbb{E}[|g(X)|] < \infty$

 $g: \mathbb{R} \to \mathbb{R}$ is a function for which the inverse image of any Borel set is a Borel set, i.e. g is \mathcal{B} -measurable

Unified Notation: The Riemann-Stieltjes Integral

- The Riemann-Stieltjes integral is a generalization of the Riemann integral
- Let X be a random variable with CDF $F_X(x)$
- The expectation of function g(X) is defined as (if it exists):

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)dF_X(x)$$

• For the case where the distribution is either discrete or continuous:

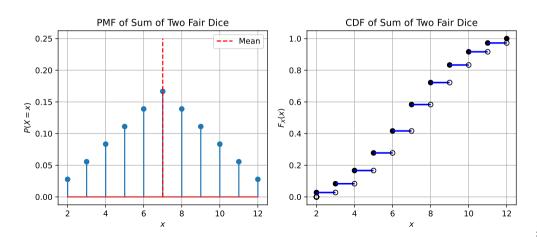
$$\int_{-\infty}^{\infty} g(x) dF_X(x) = \begin{cases} \sum_x g(x) f_X(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

Also works for mixed distributions, and is a precursor to the Lebesgue integral

Mean of Two Dice

The mean of the sum of two dice is given by

$$\mathbb{E}[X] = \sum x f_X(x) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + \dots + 12 \cdot \frac{1}{36} = 7$$



Linearity of Expectation

- Expectations are just integrals!
- Let X and Y be random variables, and $a, b \in \mathbb{R}$
- Then $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$
- ullet More generally, for any random variables X_1, X_2, \dots, X_n and constants a_1, a_2, \dots, a_n
- $\mathbb{E}[a_1X_1 + a_2X_2 + \ldots + a_nX_n] = a_1\mathbb{E}[X_1] + a_2\mathbb{E}[X_2] + \ldots + a_n\mathbb{E}[X_n]$

Variance and Higher Moments

• The variance of X is defined as

$$\mathsf{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Note that

$$\mathsf{Var}(aX) = a^2 \mathsf{Var}(X)$$

• The k-th moment of X is defined as

$$\mathbb{E}[X^k] = \int_{-\infty}^{\infty} x^k dF_X(x)$$

The k-th central moment of X is defined as

$$\mathbb{E}[(X - \mathbb{E}[X])^k] = \int_{-\infty}^{\infty} (x - \mathbb{E}[X])^k dF_X(x)$$

Skewness

• Skew coefficient: $Skew(X) = \frac{\mathbb{E}[(X - \mathbb{E}[X])^3]}{Var(X)^{3/2}}$

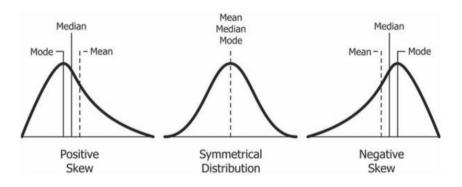


Figure: Source: Wikipedia

Kurtosis

• Kurtosis: $\operatorname{Kurt}(X) = \frac{\mathbb{E}[(X - \mathbb{E}[X])^4]}{\operatorname{Var}(X)^2} - 3$

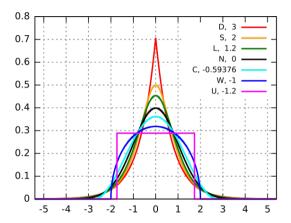


Figure: Distributions with mean zero and variance 1 distributions but different kurtosis. Source: Wikipedia

Jensen's Inequality

- ullet Let X be a random variable and $g:\mathbb{R} \to \mathbb{R}$ a convex function with $g(\mathbb{E}[X]) < \infty$
- Then $g(\mathbb{E}[X]) \leq \mathbb{E}[g(X)]$
- If g is concave, then the inequality is reversed

Proof

 $g:\mathbb{R}\to\mathbb{R}$ is convex if for any $x_0\in\mathbb{R}$, we can find m such that $g(x)\geq g(x_0)+m(x-x_0)$

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)dF_X(x) \ge \int_{-\infty}^{\infty} [g(\mathbb{E}[X]) + m(x - \mathbb{E}[X])] dF_X(x)$$
$$= g(\mathbb{E}[X]) + m \int_{-\infty}^{\infty} (x - \mathbb{E}[X]) dF_X(x)$$
$$= g(\mathbb{E}[X])$$

Examples

- Linear: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- Quadratic: $\mathbb{E}[X^2] \geq \mathbb{E}[X]^2$
- Geometric Mean: $\mathbb{E}[e^X] \ge e^{\mathbb{E}[X]}$
- Reciprocal: $\mathbb{E}[1/X] \ge 1/\mathbb{E}[X]$

Moment Generating Function

ullet The moment generating function (MGF) of a random variable X is defined as

$$M_X(t) = \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} dF_X(x)$$

if the integral exists for $t \in (-h, h)$ for some h > 0

- The MGF (if it exists) uniquely determines the distribution of X
- The *k*-th moment of *X* is given by:

$$\mathbb{E}[X^k] = \left. \frac{d^k}{dt^k} M_X(t) \right|_{t=0}$$

Proof Sketch

• Recall from the definition of exponential

$$\mathbb{E}\left[e^{tX}\right] = \mathbb{E}\left[\sum_{k=0}^{\infty} \frac{(tX)^k}{k!}\right]$$
$$= \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathbb{E}\left[X^k\right]$$

Hence

$$\frac{d^n}{dt^n} M_X(t) = \mathbb{E}[X^n] + \sum_{k=n+1}^{\infty} \frac{t^k}{k!} \mathbb{E}[X^k]$$

Characteristic Function

• The characteristic function (CF) of a random variable X is defined as

$$\phi_X(t) = \mathbb{E}[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} dF_X(x)$$

where
$$i = \sqrt{-1}$$

ullet The CF always exists and uniquely determines the distribution of X