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Random Varibles — Informal Definition

A random variable (RV)...

® is a numerical quantity
® is stochastic, i.e. the value it takes is uncertain

e if the values are known with certainty, it is a deterministic (or degenerate) RV
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{(4,6),(5,5),(6,4)}

* (X =10} ={weQ: X(w) =10}

® So using P(A4) = %, P(X =10) =

X<

® Easy to extend to X < 10 : P(
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A first definition

® Given a probability space (92, F,P)
® 3 random variable is a function X : Q — R with the property that:
A ={weQ: X(w)<z}eF VreR

® Thatis, A, is an event forall z €¢ R
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Borel o-algebra

The Borel o-algebra on R is the smallest o-algebra containing all open intervals

Denoted by B :
B=o({(a,b):a,beR})

Note that sets of the form [a,b], (a,b], [a,b) are also in B

It is hard to construct a set that is not in B

Extends to higher dimensions
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Measurable Functions

® Consider the measurable spaces (2, F), and (R, B)
e A function f: Q) — R is F-measurable if
fAB)={weQ:flweByecF VBeB

® |ntuition: We can determine wich outcomes map to the elements of B € BB
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Random Variables as Measurable Functions

For a probability space (2, F,P), and a measurable space (R, B)

A random variable X is a F-measurable function X : Q = R

The law of a random variable is the probability measure induced by X:

Px(B)=P(X € B) = P({w € Q: X(w) € B})

Note that Px is a probability measure on (R, B)

It is enought to specify Px for all B € B of the form (—o0, z|:
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Cumulative Distribution Function

® The cumulative distribution function (CDF) of a random variable X is defined as
Fx(z) =P(X < x)
and satisfies the following properties:

1. Fx(z) is non-decreasing: = <y = Fx(z) < Fx(y)
2. Fx(z) is right-continuous: lim,, Fx(y) = Fx ()
3. limg oo Fix () = 0 and lim, o Fx(z) =1

® Uniqueness: A CDF uniquely determines the RV
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Proof of Right-Continuity

® Want to prove that lim,|, F'x (y) = Fx(z)

®let A, ={weQ: X(w) <z}

Take a decreasing sequence z,, | x

Note that A, = N2, A,

and A, is a decreasing sequence of sets
® By continuity of probability measures (see lecture 1),
lim Fx(x,) = lim P(4,,) =P(N2,As,) = P(Az) = Fx(x)

n—o0 n—oo
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Probabilities from CDFs

Consider z,y € R with x <y, Fx the CDF of X, and Fx(27) = lim 4, Fx(2)
1. P(X >x)=1—- Fx(x)
2. P(X =2)=Fx(z) — Fx(z7)
3. P(X <z)=Fx(z7)

4. Plx < X <y) =Fx(y) — Fx(x)
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Support of a Random Variable

Take a non-negative real-valued function, f

The support of f is the set of the real line where f is strictly positive:

{r eR: f(x) >0}

We will refer to the support of a random variable X as the support of fx

® j.e. the set of values/intervals that X can take with positive probability
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Discrete Random Variables

® A random variable X is discrete if it takes countably many values {1, x2,...}

® The probability mass function (PMF) of X is defined as
fx(2) =P(X = x)
P(X <) - P(X <)

Fx(x) = Fx(27)

® The CDF can be recovered as

Fx(z) = fx(u)

u<x

® The PMF satisfies the following properties:
1. fx(ir) S [O, 1]
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Example: Two fair dice

® Let X be the sum of the roll of two fa
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® \What are the PMF and CDF of X?
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Example: Two fair dice
® | et X be the sum of the roll of two fair dice

PMF of Sum of Two Fair Dice

CDF of Sum of Two Fair Dice
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Continuous Random Variables: Motivation

So far, we have considered random variables that take countably many values

® |n many cases, it is more natural to consider RVs that can take any value in an interval

In practice, measurement is limited by precision

Consider measuring the height of a person with an ever more precise ruler

We also model as continuous, variables that take many discrete values like income,
wealth, etc.
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Continuous Random Variables

® A random variable X is continuous if it has a CDF F'x(x) that can be written as

Fx(z) = /_x fx(u)du

for some function integrable function fx(z)

® The probability density function (PDF) of X is defined as
d

)
fx(z) T x ()
— lim Fx(ZE + h) — Fx(.’L‘)
h—0 h
. Plze<X<z+h)
= lim
h—0 h
® The PDF satisfies the following properties:

L fx(z)=0
2. [T fx(z)dz =1
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Example: Gaussian Random Variable

® Let X ~ N(0,1) be a standard normal random variable

fx(x)

PDF of Standard Normal Distribution

—z2/2

CDF of Standard Normal Distribution
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Any non-negative integrable function can be a PDF

Let g : R — R, be a continuous, integrable, and non-negative function

Then [ g(z)dz = K >0

Define fx(z) = %g()

Then fx(x) is a PDF

18/32



Expectation
® Suppose X is a discrete random variable with PMF fx ()

® The expectation of X is defined as

E[X] = Za;fx(x)

xT

® For a continuous random variable with PDF fx (z), the expectation is defined as

E[X] = /OO xfx(z)dx

—00

Technically, the expecation might not exist

When writing E[X], we assume E[| X|] < oo
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Law of the Unconscious Statistician (LOTUS)

Let g : R — R be a nice function®

Consider a probability space (€2, F,P) and a random variable X : Q@ — R

Then ¢g(X) is a random variable

(LOTUS) The expectation of g(X) is given by

Elg(X)] =Y g(x)fx(z) if X is discrete

Elg(X)] = /oo g(z)fx(x)dx if X is continuous

—0o0

® Again, we are assuming that E[|g(X)|] < oo

'g:R — R is a function for which the inverse image of any Borel set is a Borel set, i.e. g is B-measurable
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Unified Notation: The Riemann-Stieltjes Integral

® The Riemann-Stieltjes integral is a generalization of the Riemann integral

Let X be a random variable with CDF Fx(x)

The expectation of function g(X) is defined as (if it exists):

Elg(X)] = / " g(@)dFx ()

—00

For the case where the distribution is either discrete or continuous:

= > 9(@) fx(x) if X is discrete
/ gle)die) = {ffooo g(x)fx(x)dx if X is continuous

—00

Also works for mixed distributions, and is a precursor to the Lebesgue integral
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Mean of Two Dice
The mean of the sum of two dice is given by

E[X]:fox(x):z-i+3.3+..
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Linearity of Expectation

Expectations are just integrals!

® Let X and Y be random variables, and a,b € R

Then E[aX + bY| = aE[X] + bE[Y]

® More generally, for any random variables X1, X, ..., X, and constants ay,as, ..., a,

E[ale + CLQXQ + ...+ aan] == alE[Xl] + CLQE[XQ] + ...+ an]E[Xn]
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Variance and Higher Moments
® The variance of X is defined as
Var(X) = E[(X - E[X])*] = E[X?] - E[X]?

® Note that
Var(aX) = a?Var(X)

® The k-th moment of X is defined as
E[X*) = / a*dFx (x)

® The k-th central moment of X is defined as

B(X-BX) = [ (o - BX)dFx ()

—00
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Skewness
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Figure: Source: Wikipedia
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Kurtosis
e Kurtosis: Kurt(X) =

0.8
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Figure: Distributions with mean zero and variance 1 distributions but different kurtosis. Source:
Wikipedia
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Jensen’s Inequality

® Let X be a random variable and g : R — R a convex function with g(E[X]) < oo
* Then g(E[X]) < E[g(X)]

® |f g is concave, then the inequality is reversed
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Proof

g: R — R is convex if for any zg € R, we can find m such that g(x) > g(x¢) + m(z — xo)
Blo(x)) = [ " g(@)dFx () > / " (E(X]) + m(z — E[X])] dFx ()

== +m/ z—E dFX )

= 9(B[X])
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Examples

Linear: E[aX + b = aE[X] 4+ b

Quadratic: E[X?] > E[X]?

® Geometric Mean: E[eX] > ¢FlX]

Reciprocal: E[1/X] > 1/E[X]
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Moment Generating Function

® The moment generating function (MGF) of a random variable X is defined as

M (t) = E[eX] = / e dFy (x)
if the integral exists for ¢t € (—h, h) for some h > 0
® The MGF (if it exists) uniquely determines the distribution of X

® The k-th moment of X is given by:

k dk
B[XH) = 2 M1
t=0
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Proof Sketch

® Recall from the definition of exponential

t — (tX)*
k=0
= > wB[x]
k=0
® Hence
4 (t) = E[X"] + i iE[X’“]
dtr * N k=n+1 k!

31/32



Characteristic Function

® The characteristic function (CF) of a random variable X is defined as

o0

bx(t) = B[] = / ¢y ()

-0
where 1 = v/—1

® The CF always exists and uniquely determines the distribution of X
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