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The Distribution Zoo

Figure: Source: Wikipedia
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Bernoulli Distribution

• Consider a biased coin with probability of heads p

• We can model the outcome of a single flip as a Bernoulli random variable

• We write X ∼ Bernoulli(p) and the PMF is

fX(x) =


p if x = 1

1− p if x = 0

0 otherwise

• Expectation? E[X] = p · 1 + (1− p) · 0 = p

• Variance? Var(X) = p · 12 + (1− p) · 02 − p2 = p(1− p)

• MGF of X? MX(t) = E[etX ] = pet + (1− p)e0 =⇒ E[Xr] = p, r ∈ {1, 2, . . . }
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Binomial Distribution

• Consider n independent Bernoulli trials each with probability of success p

• Let X be the number of successes in these n trials

• We write X ∼ Binomial(n, p) and the PMF is

fX(x) =

{(
n
x

)
px(1− p)n−x if x = 0, 1, . . . , n

0 otherwise

• Recall
(
n
x

)
= n!

x!(n−x)! is the number of ways to choose x elements from n without order
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Binomial Distribution
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Binomial Distribution

• Recall the binomial expansion (a+ b)n =
∑n

k=0

(
n
k

)
akbn−k

• MGF?

MX(t) = E[etX ] =

n∑
x=0

etx
(
n

x

)
px(1− p)n−x

=

n∑
x=0

(
n

x

)
(pet)x(1− p)n−x

= (pet + 1− p)n

• E[X] = np, E[X2] = np(1− p) + n2p2, Var(X) = np(1− p)
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For Later

• Take the MGF of a Binomial random variable:

MX(t) = (pet + 1− p)n

• Consider the limit as n → ∞ and p → 0 such that np = λ > 0 is fixed:

lim
n→∞,p→0+,np=λ

(pet + 1− p)n = lim
n→∞

(
1 +

λ(et − 1)

n

)n

= eλ(e
t−1)
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Poisson Distribution

• Suppose we want to count a number of (successful) events in a fixed interval of time

• Assume that the events occurr independently with a constant rate λ per unit time

• Let X be the number of events in the interval of length 1

• We write X ∼ Poisson(λ) and the PMF is

fX(x) =
(λ)xe−λ

x!
, for x = 0, 1, 2, . . .
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Poisson and Binomial

• MGF?

MX(t) = E[etX ] =

∞∑
x=0

etx
(λ)xe−λ

x!

=

∞∑
x=0

(λet)xe−λ

x!

= eλ(e
t−1)

• Recall that MGF uniquely determines the distribution of a random variable
• So Poisson is the limit of the Binomial as

1. n → ∞
2. p → 0
3. np = λ is fixed
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Poisson Distribution
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Geometric
• Let X be the number of trials until the first success in a sequence of Bernoulli trials

• We write X ∼ Geometric(p) and the PMF is

fX(x) = (1− p)x−1p, for x = 1, 2, . . .

• MGF?

MX(t) = E[etX ] =

∞∑
x=1

etx(1− p)x−1p

= pet
∞∑
x=1

(et(1− p))x−1

=
pet

1− et(1− p)
, for et(1− p) < 1 ⇐⇒ t < − log(1− p)
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Geometric Distribution
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Can you guess the expectation of a Geometric random variable?
Suppose p = 0.1, how many times on average do you need to flip a coin until you get a head?

E[X] =
1

p
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Negative Binomial
• Let X be the number of trials until the r-th success in a sequence of Bernoulli trials

• We write X ∼ NegBin(r, p) and the PMF is

fX(x) =

(
x− 1

r − 1

)
pr(1− p)x−r, for x = r, r + 1, . . .

• MGF?

MX(t) = E[etX ] =

∞∑
x=r

etx
(
x− 1

r − 1

)
pr(1− p)x−r

=

∞∑
x=r

(
x− 1

r − 1

)
(pet)r(1− p)x−r

=

(
pet

1− (1− p)et

)r
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Uniform Random Variable

• A random variable X is uniformly distributed on the interval [a, b] if its PDF is

fX(x) =

{
1

b−a if x ∈ [a, b]

0 otherwise

• The CDF is then

FX(x) =


0 if x < a
x−a
b−a if x ∈ [a, b]

1 if x > b

• Expectation? E[X] = a+b
2

• Variance? Var(X) = (b−a)2

12
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Exponential Distribution

• Let X be the time until the first event in a Poisson process with rate λ

• We write X ∼ Exp(λ) and the PDF is

fX(x) = λe−λx, for x ≥ 0

• The CDF is then

FX(x) =

{
1− e−λx if x ≥ 0

0 otherwise

• Expectation? E[X] = 1
λ

• MGF? MX(t) = λ
λ−t , for t < λ
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Memoryless Property
• The Exponential distribution is the only continuous RV with the memoryless property

• This means that for any s, t ≥ 0, we have that

P(X > s+ t|X > s) = P(X > t)

• To see this, note that:

P(X > s+ t|X > s) =
P(X > s+ t ∩X > s)

P(X > s)

=
P(X > s+ t)

P(X > s)

=
e−λ(s+t)

e−λs

= P(X > t)
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Weibull Distribution
• The Weibull distribution is a generalization of the Exponential distribution,
X ∼ Weibull(λ, k), k > 0, λ > 0

• The PDF is

fX(x) =

{
λkxk−1e−λxk

if x ≥ 0

0 otherwise

• The CDF is then

FX(x) =

{
1− e−λxk

if x ≥ 0

0 otherwise

• Memory?

P(X > s+ t|X > s) =
e−λ(s+t)k

e−λsk

• You can verify it is increasing (decreasing) in s if k < 1 (k > 1)
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Different Weibull’s
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Gaussian Distribution

• The Gaussian distribution is also known as the Normal distribution, X ∼ N(µ, σ2)

• The PDF is

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2

• The CDF is then

FX(x) =

∫ x

−∞

1√
2πσ

e−
(t−µ)2

2σ2 dt

• MGF? MX(t) = eµt+
σ2t2

2
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Log-Normal Distribution

• The Log-Normal distribution is a distribution of a random variable whose logarithm is
normally distributed

• Let X be a log-normal random variable, Y = log(X) is normally distributed

• The PDF of X is

fX(x) =
1

xσ
√
2π

e−
(log(x)−µ)2

2σ2 , for x > 0

• The CDF is then

FX(x) =

∫ x

0

1

tσ
√
2π

e−
(log(t)−µ)2

2σ2 dt

• MGF? Does not exist for any t!

• Mean? E[X] = E[elog(X)] = eµ+σ2/2
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Log-Normal vs Normal
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Motivating the Pareto

Also for income, consumption, city size, firm size, etc.
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Deriving the Pareto
• We have seen that

lnP(X > x) ≈ ln(K)− α ln(x) ⇐⇒ P(X > x) ≈ Kx−α

• Differentiating we get the shape of the PDF:

fX(x) = − d

dx
P(X > x) = αKx−α−1

• For it to be integrable, cannot start at 0, so we add a lower bound xm:∫∞
xm

αKx−α−1 = Kx−α
m

• So the PDF of a Pareto is

fX(x) =

{
αxα

m
xα+1 if x ≥ xm > 0

0 otherwise
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Functions of Random Variables

• Let X be a random variable and g : R → R a "nice" function

• Define Y = g(X)

• What can we say about the distribution of Y ?

• Recall that the CDF uniquely determines the distribution of a random variable

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)

• But in general P(g(X) ≤ y) ̸= P(X ≤ g−1(y))

• For instance, g(x) = x2 =⇒ need a more general approach
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Inverse Image

• Let g : R → R be a function

• The inverse image of a set B ⊂ R is defined as

g−1(B) = {x ∈ R : g(x) ∈ B}

• Example: Let g(x) = x2 and B = [0, 1], then g−1(B) = [−1, 1]

• More generally:

P(Y ∈ B) = P(g(X) ∈ B) = P(X ∈ g−1(B))
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Back to the CDF

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)

= P(X ∈ g−1((−∞, y]))

=

∫
x∈g−1((−∞,y])

dFX(x)

=

{∑
x∈g−1((−∞,y]) fX(x) if X is discrete∫

x∈g−1((−∞,y]) fX(x)dx if X is continuous
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Example: Number of Failures in n Trials
• We know that if X is the number of successes in n trials, then X ∼ Binomial(n, p)

• By symmetry, we would expect that the number of failures Y ∼ Binomial(n, 1− p)

• Let’s prove this using the CDF:

FY (y) =
∑

{x:g(x)≤y}

fX(x)

=
∑

{x:n−x≤y}

(
n

x

)
px(1− p)n−x

=
n∑

x=n−y

(
n

x

)
px(1− p)n−x

=

y∑
x=0

(
n

n− x

)
pn−x(1− p)x,

(
n

x

)
=

(
n

n− x

)
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Example: Square of a Continuous RV
• Let X be a continuous random variable with CDF FX(x)

• Let Y = X2

• We want to find the CDF of Y

FY (y) =

∫
x∈g−1((−∞,y])

fX(x)dx

=

∫ √
y

−√
y
fX(x)dx

= FX(
√
y)− FX(−√

y), for y ≥ 0

• We can get the PDF of Y by differentiating FY (y):

fY (y) =

{
1

2
√
y

[
fX(

√
y) + fX(−√

y)
]

for y > 0

0 otherwise
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Monotone Transformations

• We said that in general P(g(X) ≤ y) ̸= P(X ≤ g−1(y))

• But when g : R → R is a strictly monotonic function, we have that g−1 is well-defined

• In particular:

g−1((−∞, y]) = {x ∈ R : g(x) ≤ y} =

{
(−∞, g−1(y)] if g is increasing
[g−1(y),∞) if g is decreasing
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Monotone Transformations

• Now we can write the CDF of Y = g(X) as

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)

=

{
P(X ≤ g−1(y)) if g is increasing
P(X ≥ g−1(y)) if g is decreasing

=

{
FX(g−1(y)) if g is increasing
1− FX(g−1(y)−) if g is decreasing

1

1Recall f(x−) = limh→0+ f(x− h)
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The Change of Variables Formula

• If X is continous, we have a general formula for the PDF of Y = g(X):

fY (y) =

{
d
dyFX(g−1(y)) if g is increasing
d
dy (1− FX(g−1(y)−)) if g is decreasing

=

{
fX(g−1(y)) d

dyg
−1(y) if g is increasing

−fX(g−1(y)) d
dyg

−1(y) if g is decreasing

= fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣
• So if g is strictly monotonic and X is continuous, we can know the PDF immediately
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Location-Scale Transformations
• A location-scale transformation is a transformation of the form Y = µ+ σX

• We can write the CDF of Y as

FY (y) = P(Y ≤ y) = P(µ+ σX ≤ y)

= P
(
X ≤ y − µ

σ

)
= FX

(
y − µ

σ

)
• The PDF of Y is then

fY (y) = fX

(
y − µ

σ

) ∣∣∣∣ 1σ
∣∣∣∣

• This should look familiar!
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Example: Log-Normal Distribution

• Let X ∼ N (µ, σ2)

• Let Y = eX

• We know that Y is log-normally distributed, this is how we can prove it:

fY (y) = fX(log(y))

∣∣∣∣1y
∣∣∣∣

=
1√
2πσ

e−
(log(y)−µ)2

2σ2
1

y

=
1

y
√
2πσ

e−
(log(y)−µ)2

2σ2

34 / 34


	Models for Discrete Random Variables
	Models for Continuous Random Variables
	Functions of Random Variables

