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Borel Sets in R2 and Rn

• We defined the Borel sets in R, we can extend this definition to R2 and Rn:

B(R2) = σ ({(a, b]× (c, d] : a, b, c, d ∈ R})

• Similarly:

B(Rn) = σ ({(a1, b1]× · · · × (an, bn] : ai, bi ∈ R})
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Bivariate Distributions – The CDF
• Let X and Y be two random variables

• We write

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y) = P(X ≤ x, Y ≤ y)

Properties:
1. limx,y→∞ FX,Y (x, y) = 1

limx→−∞ FX,Y (x, y) = 0, ∀y
limy→−∞ FX,Y (x, y) = 0, ∀x

2. Right continuous in x: limh→0+ FX,Y (x+ h, y) = FX,Y (x, y),∀y
Right continuous in y: limh→0+ FX,Y (x, y + h) = FX,Y (x, y), ∀x

3. Monotonicity in x: x1 ≤ x2 ⇒ FX,Y (x1, y) ≤ FX,Y (x2, y), ∀y
Monotonicity in y: y1 ≤ y2 ⇒ FX,Y (x, y1) ≤ FX,Y (x, y2),∀x
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Recovering the marginal CDFs

• Recall that when we write P(X ≤ x) we mean P({ω ∈ Ω : X(ω) ≤ x})

• So as x → ∞, we have P(X ≤ ∞) = P({ω ∈ Ω : X(ω) ≤ ∞}) = P(Ω) = 1

• For example, the marginal CDF of X is

FX(x) = lim
y→∞

FX,Y (x, y)

• Similarly, the marginal CDF of Y is

FY (y) = lim
x→∞

FX,Y (x, y)
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A simple example
• We are interested in the probability that X,Y take values in a (Borel) subset B of R2

• The simplest case is when B is a rectangle B = (x1, x2]× (y1, y2]

x

y

x1 x2

y2

y1

x1

y1

x2

y2

How do we compute P(X ∈ (x1, x2], Y ∈ (y1, y2])?

P(X ∈ (x1, x2], Y ∈ (y1, y2]) = FX,Y (x2, y2)− FX,Y (x1, y2)− FX,Y (x2, y1) + FX,Y (x1, y1)
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Bivariate PMF
• When both X and Y are discrete, we can define the joint PMF as

fX,Y (x, y) = P(X = x, Y = y)

• We can thus recover the CDF as

FX,Y (x, y) =
∑

x′≤x,y′≤y

fX,Y (x
′, y′)

• How can we recover the marginal PMFs?

X\Y y1 y2 y3

x1 p11 p12 p13
x2 p21 p22 p23

• fX(x) =
∑

y fX,Y (x, y) and fY (y) =
∑

x fX,Y (x, y)

7 / 39



Bivariate PDF

• Suppose both X and Y are jointly-continuous,

• The PDF is an integrable function fX,Y : R2 → R such that

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv

• With the following properties:
1. fX,Y (x, y) ≥ 0 for all (x, y) ∈ R2

2.
∫∞
−∞

∫∞
−∞ fX,Y (x, y)dxdy = 1

3. For any Borel set B ⊂ R2, P((X,Y ) ∈ B) =
∫ ∫

B
fX,Y (x, y)dxdy
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Recovering the marginal PDFs

• The marginal PDFs are defined as

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy

• Similarly,

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

• Question: Say we know fX(x) and fY (y), can we recover fX,Y (x, y)?

• Not in general, only if X and Y are independent
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Joint Moments
• Let g : R2 → R be a well-behaved function and X,Y two random variables:

E[g(X,Y )] =

{∑
x

∑
y g(x, y)fX,Y (x, y), discrete case,∫∞

−∞
∫∞
−∞ g(x, y)fX,Y (x, y) dxdy, continuous.

• Like in the univariate case, we will use the common notation:

E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)dFX,Y (x, y)

• We call the joint moments of X,Y the expectations of XmY n for m,n ∈ N

• And the joint central moments are defined as E[(X − E[X])m(Y − E[Y ])n]

• Example: the covariance is E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]
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Covariance Properties
• Symmetry:

Cov(X,Y ) = Cov(Y,X)

• Bilinearity:
Cov(X1 +X2, Y ) = Cov(X1, Y ) + Cov(X2, Y )

and Cov(aX, Y ) = aCov(X,Y )

• Variance:
Cov(X,X) = Var(X)

and Var[X + Y ] = Var(X) + Var(Y ) + 2Cov(X,Y )

• Independence: If X and Y are independent, then

Cov(X,Y ) = 0
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Correlation

• The correlation between two random variables X and Y is defined as

Corr(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

• For rvs. X,Y with finite second moments, we have −1 ≤ Corr(X,Y ) ≤ 1

• With |Corr(X,Y )| = 1 iff Y = aX + b for some a, b ∈ R
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Proof
• Define Z = Y − aX, then

0 ≤ Var(Z) = Var(Y − aX) = Var(Y ) + a2Var(X)− 2aCov(X,Y )

= h(a)

• Since h(a) ≥ 0 for all a, it has at most one root

• That is

0 ≥4Cov(X,Y )2 − 4Var(X)Var(Y ) = 4
[
Cov(X,Y )2 − Var(X)Var(Y )

]
⇐⇒ Cov(X,Y )2 ≤ Var(X)Var(Y )

⇐⇒ Cov(X,Y )2

Var(X)Var(Y )
≤ 1

⇐⇒ |Corr(X,Y )| ≤ 1

• Finally, note that Var(Z) = 0 when Y = aX + b
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Multivariate Generalization (1/2)

For n random variables X1, . . . , Xn, we have analogous definitions:
1. The joint CDF is a function FX1,...,Xn : Rn → [0, 1] such that

FX1,...,Xn(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn);

2. The marginal CDFs are, for any j = 1, . . . , n, the functions

FXj (xj) = FX1,...,Xn(∞, . . . ,∞, xj ,∞, . . . ,∞);
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Multivariate Generalization (2/2)

3. The marginal PMF or PDF are, for any j = 1, . . . , n, the functions

fXj (xj) =

{∑
x1

· · ·
∑

xj−1

∑
xj+1

· · ·
∑

xn
fX1,...,Xn(x1, . . . , xn), discrete case,∫∞

−∞· · ·
∫∞
−∞ fX1,...,Xn(x1, . . . , xn) dx1 . . . dxj−1dxj+1 . . . dxn, continuous;

4. If g is a well-behaved function g : Rn → R, then

E[g(X1, . . . , Xn)] =

{∑
x1

· · ·
∑

xn
g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn), discrete,∫∞

−∞· · ·
∫∞
−∞ g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn) dx1 . . . dxn, continuous.
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Joint MGFs

• The joint MGF of two random variables X,Y is defined as

MX,Y (t1, t2) = E[et1X+t2Y ]

• We can Taylor expand the exponential function to recover the moments of X,Y :

MX,Y (t1, t2) = E

[ ∞∑
m=0

∞∑
n=0

tm1
m!

tn2
n!
XmY n

]

=

∞∑
m=0

∞∑
n=0

tm1
m!

tn2
n!
E[XmY n]

• Can recover the m,n-th moments of X,Y as ∂m+nMX,Y (t1,t2)
∂tm1 ∂tn2

|t1=t2=0
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Independence of two random variables
• Two random variables X,Y are independent iff the events {X ≤ x} and {Y ≤ y} are

mutually independent for all x, y:

FX,Y (x, y) = FX(x)FY (y), ∀x, y

• Equivalently, iff
fX,Y (x, y) = fX(x)fY (y),∀x, y

• The random variables X1, . . . , Xn are mutually independent iff the events
{X1 ≤ x1}, . . . , {Xn ≤ xn} are independent for all x1, . . . , xn:

FX1,...,Xn(x1, . . . , xn) = FX1(x1) . . . FXn(xn)

• Equivalently, iff
fX1,...,Xn(x1, . . . , xn) = fX1(x1) . . . fXn(xn)

17 / 39



Moments and Independence

• A motivating example:

E[XY ] =

∫ ∞

−∞

∫ ∞

−∞
xyfX,Y (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y)dxdy

=

(∫ ∞

−∞
xfX(x)dx

)(∫ ∞

−∞
yfY (y)dy

)
= E[X]E[Y ]

• In general, if a function g(x, y) = h(x)k(y) then for X,Y independent:

E[g(X,Y )] = E[h(X)]E[k(Y )]

• If X,Y are independent, then MX,Y (t1, t2) = MX(t1)MY (t2)
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Sum of two random variables

• Let X and Y be two random variables with joint density fX,Y (x, y)

• Let Z = X + Y

• Then:

fZ(z) =

{∫∞
−∞ fX,Y (x, z − x)dx, continuous case,∑
x fX,Y (x, z − x), discrete case.

• Proof: (discrete case): Define Z = X + Y :

{Z = z} = {X + Y = z} =
⋃
u

{X = u, Y = z − u}

fZ(z) = P(Z = z) =
∑
u

P(X = u, Y = z − u)

Transformations
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Convolution

• If X and Y are independent, then fX,Y (x, y) = fX(x)fY (y) and

fZ(z) =

{∫∞
−∞ fX(x)fY (z − x)dx, continuous case,∑
x fX(x)fY (z − x), discrete case.

• This operation is called convolution and we denote it as fZ = fX ∗ fY

• In the case of n independent random variables and S = X1 + · · ·+Xn, we have

fS = fX1 ∗ · · · ∗ fXn

20 / 39



Example: Sum of two Exponentials

• Let X ∼ Exp(λ) and Y ∼ Exp(µ) be two independent exponential random variables

• The PDF of X is fX(x) = λe−λx and the PDF of Y is fY (y) = µe−µy

• The PDF of Z = X + Y is

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx

=

∫ z

0
λe−λxµe−µ(z−x)dx

= λµe−µz

∫ z

0
e−(λ+µ)xdx

=
λµ

λ+ µ
e−µz

(
1− e−(λ+µ)z

)
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Random Vector – Definition and Notation
Random vector: An n-dimensional vector of random variables, i.e., a function

X = (X1, . . . , Xn)
T : Ω → Rn.

The CDF, PMF or PDF, and MGF of a random vector are the joint CDF, PMF or PDF, and
MGF of X1, . . . , Xn, so for any x = (x1, . . . , xn), t = (t1, . . . , tn) ∈ Rn:

FX(x) = FX1,...,Xn(x1, . . . , xn),

fX(x) = fX1,...,Xn(x1, . . . , xn),

MX(t) = MX1,...,Xn(t1, . . . , tn).

Expectation of a random vector: The expectation of a random vector is a vector of the
expectations, i.e., it is taken element by element:

E[X] =

E[X1]
...

E[Xn]

 .
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Random Matrix

• Similarly, a random matrix is a matrix whose entries are random variables:

W =

W11 . . . W1n
...

. . .
...

Wm1 . . . Wmn


• With joint CDF, PMF or PDF, and MGF defined as the joint CDF, PMF or PDF, and

MGF of the entries

• The expectation of a random matrix is a matrix of the expectations of the entries
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Variance of a Random Vector

• The variance-covariance matrix of an n× 1 random vector X is the n× n matrix:

Var[X] = E[(X − E[X])(X − E[X])T ]

Var[X] =


Var[X1] Cov[X1, X2] . . . Cov[X1, Xn]

Cov[X2, X1] Var[X2] . . . Cov[X2, Xn]
...

...
. . .

...
Cov[Xn, X1] Cov[Xn, X2] . . . Var[Xn]


• Question: What Var[X] if X is independent and identically distributed (i.i.d.)? σ2In
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The Variance-Covariance Matrix is PSD

• The variance-covariance matrix is positive semi-definite (PSD)

• For any vector a ∈ Rn, we have: aTVar[X]a ≥ 0

• Proof: Let X be a random vector and a ∈ Rn. Then

Var[aTX] = E
[
(aTX − E[aTX])(aTX − E[aTX])T

]
= E

[
(aT (X − E[X]))(X − E[X])Ta

]
= aTVar[X]a ≥ 0
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Motivation for Conditional Distributions

• Suppose we have two random varianles X and Y and we know their joint distribution
fX,Y (x, y)

• Suppose we know that X = x, what can we say about Y ?
• We now how to compute conditional probabilities:

P(A|B) =
P(A ∩B)

P(B)

• Intuitively, for discrete RVs we can use {X = x} and {Y = y} and apply the same
formula
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Conditional PMF

• Let X and Y be two discrete random variables with joint PMF fX,Y (x, y)

• The conditional PMF of Y given X = x is defined as

fY |X(y|x) =
fX,Y (x, y)

fX(x)

• Is this a valid PMF?∑
y

fY |X(y|x) =
∑
y

fX,Y (x, y)

fX(x)
=

1

fX(x)

∑
y

fX,Y (x, y) = 1

• We can only condition on X = x if fX(x) > 0, that is if x is in the support of X
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Conditional PDF

• Let X and Y be two continuous random variables with joint PDF fX,Y (x, y)

• The conditional PDF of Y given X = x is defined as

fY |X(y|x) =
fX,Y (x, y)

fX(x)

• Is this a valid PDF?∫ ∞

−∞
fY |X(y|x)dy =

∫ ∞

−∞

fX,Y (x, y)

fX(x)
dy =

1

fX(x)

∫ ∞

−∞
fX,Y (x, y)dy = 1

• We can only condition on X = x if fX(x) > 0, that is if x is in the support of X
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Conditional CDF

• The conditional CDF of Y given X = x is defined as

FY |X(y|x) = P(Y ≤ y|X = x) =

{∑
y′≤y fY |X(y′|x), discrete case,∫ y

−∞ fY |X(y′|x)dy′, continuous.
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Example: Hurricanes reaching land

• We are interested in modelling the number of hurricanes reaching land in a given year Y

• Suppose that we know that number of hurricanes N ∼ Poisson(λ): fN (n) = e−λλn

n!

• And that each hurricane has a probability p of reaching land Y |N = n ∼ Binomial(n, p)

• One can show that Y ∼ Poisson(λp)

• You can prove this directly using the definition of conditional PMF

• We will instead use this to illustrate conditional expectations
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Conditional Expectation

• We have seen that Y |X = x is a perfectly valid random variable

• We can thus define the conditional expectation of Y given X = x as

E[Y |X = x] =

{∑
y yfY |X(y|x), discrete case,∫∞

−∞ yfY |X(y|x)dy, continuous.

• Define the function g(x) = E[Y |X = x], then the conditional expectation of Y given
X is

E[Y |X]

• That is, E[Y |X] is a random variable that depends on X
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Law of Iterated Expectations

• The law of iterated expectations states that for any two random variables X and Y :

E[Y ] = E[E[Y |X]]

• Proof: ∫ ∞

−∞
E[Y |X = x]dFX(x) =

∫ ∞

−∞

(∫ ∞

−∞
ydFY |X(y|x)

)
dFX(x)

=

∫ ∞

−∞

∫ ∞

−∞
ydFX,Y (x, y)

=

∫ ∞

−∞
ydFY (y) = E[Y ]

• Also works for a function of Y : E[g(Y )] = E[E[g(Y )|X]]
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Example: Hurricanes reaching land

• We have seen that Y ∼ Poisson(λp)

• We can compute the conditional expectation of Y given N = n as

E[Y |N = n] = np

• And the law of iterated expectations gives us

E[Y ] = E[E[Y |N ]] = E[Np] = λp
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LOTUS for Conditional Expectations

• g : R2 → R is a well-behaved real function

• Then, the conditional expectation of g(Y,X) given X = x is

E[g(Y,X)|X = x] =

∫ ∞

−∞
g(y, x)dFY |X(y|x)

• And the conditional expectation of g(Y,X) given X is

E[g(Y,X)|X]

• Example (Taking out what is known): E[XY |X] = XE[Y |X]

34 / 39



Conditional Moments
• The r-th conditional moments of Y given X = x are defined as

E[Y r|X = x] =

∫ ∞

−∞
yrdFY |X(y|x)

• And the r-th conditional central moments of Y given X = x are defined as

E[(Y − E[Y |X = x])r|X = x] =

∫ ∞

−∞
(y − E[Y |X = x])rdFY |X(y|x)

• Similarly as before, we can define the r-th conditional moments of Y given X as

E[Y r|X]

and the r-th conditional central moments of Y given X as

E[(Y − E[Y |X])r|X]
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Law of Iterated Variances
• We showed that we can recover the expectation of Y as E[Y ] = E[E[Y |X]]

• For the variance, we have a similar result:

Var[Y ] = E[Var[Y |X]] + Var[E[Y |X]]

• Proof:

Var[Y ] = E[Y 2]− E[Y ]2

= E[E[Y 2|X]]− E[E[Y |X]]2

= E[Var[Y |X]] + E[E[Y |X]2]− E[E[Y |X]]2

= E[Var[Y |X]] + Var[E[Y |X]]

• Hurricane, X ∼ Poisson(λ)
• Y |X = x ∼ Binomial(x, p), X ∼ Poisson(λ)
• E[Y |X = x] = xp, Var[Y |X = x] = xp(1− p)
• E[Y ] = E[E[Y |X]] = E[Xp] = λp
• Var[Y ] = E[Var[Y |X]] + Var[E[Y |X]] = E[Xp(1− p)] + Var[λp] = λp(1− p) + λp = λp
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Conditional MGFs

• The conditional MGF of Y given X = x is defined as

MY |X(t|x) = E[etY |X = x]

• We can recover the moments of Y given X = x as

∂nMY |X(t|x)
∂tn

|t=0 = E[Y n|X = x]

• Note that
MY (t) = E[MY |X(t|X)]
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Conditional MGFs in the Hurricane Example

• MY |N (t|N = n) = (1− p+ pet)n, MX(t) = eλ(e
t−1)

• Then MY (t) = E[MY |N (t|N)] = E[(1− p+ pet)N ] = E[N log(1− p+ pet)]

• We can compute this using the MGF of N : MY (t) = eλp(e
t−1)

• This is the MGF of a Poisson distribution with parameter λp
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Conditioning for random vectors
• Let X,Y be two random vectors

• We can define the conditional distribution of Y given X = x as

fY |X(y|x) =
fX,Y (x,y)

fX(x)

• And the expectation of Y given X = x as

E[Y |X = x] =

E[Y1|X = x]
...

E[Yn|X = x]


• The conditional expectation of Y given X is

E[Y |X] =

E[Y1|X]
...

E[Yn|X]


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Transformation of Continuous Random Variables (1/2)
We are interested in transforming one pair of random variables into another pair of random
variables.
• Consider pairs of random variables (U, V ) and (X,Y ).
• Suppose that X and Y are both functions of U and V :

X = g1(U, V ), Y = g2(U, V ).

• Suppose g is well-behaved and invertible.
• We use the inverse transformation:

U = h1(X,Y ), V = h2(X,Y ).

• The overall transformation is g, so (X,Y ) = g(U, V ), and the inverse is h, so
(U, V ) = g−1(X,Y ) = h(X,Y ).

• Then, if (U, V ) are continuous random variables with support D, and (X,Y ) = g(U, V ),
the joint density of X and Y is

fX,Y (x, y) =

{
fU,V (h(x, y)) |Jh(x, y)| for (x, y) ∈ R,

0 otherwise.
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Transformation of Continuous Random Variables (2/2)
This is referred to as the change-of-variables formula.
• The Jacobian of the inverse transformation, Jh(x, y), is given by:

Jh(x, y) =

∣∣∣∣ ∂
∂xh1(x, y)

∂
∂xh2(x, y)

∂
∂yh1(x, y)

∂
∂yh2(x, y)

∣∣∣∣
• This simplifies to:

Jh(x, y) =
∂

∂x
h1(x, y)

∂

∂y
h2(x, y)−

∂

∂x
h2(x, y)

∂

∂y
h1(x, y).

• The Jacobian can be expressed in terms of the Jacobian of the original transformation Jg:

Jg(u, v) =

∣∣∣∣ ∂
∂ug1(u, v)

∂
∂ug2(u, v)

∂
∂vg1(u, v)

∂
∂vg2(u, v)

∣∣∣∣ .
Back
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Proof in the Continuous Case
• Let Z = X + Y , U = X or X = U , Y = Z − U

• hence ∂X
∂U = 1, ∂X

∂Z = 0, ∂Y
∂U = −1, ∂Y

∂Z = 1

• The Jacobian of the inverse transformation is:

Jh(x, y) =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
= 1

• The joint density of U,Z is

fU,Z(u, z) = fX,Y (u, z − u)× 1 = fX,Y (u, z − u)

• Then, the density of Z = X + Y is

fZ(z) =

∫ ∞

−∞
fX,Y (u, z − u)du
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