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Borel Sets in R% and R"

e \We defined the Borel sets in R, we can extend this definition to R? and R™:
B(R?) = o ({(a,t]  (c;d] : a,b,¢,d € R})
® Similarly:

B(Rn) = a({(al,bl] X e X (an,bn] : ai,bi S R})
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Bivariate Distributions — The CDF

® Let X and Y be two random variables

® \We write

Properties:
L limg yseo Fxy(z,y) =1
limxﬁ_oo F)Qy(l‘, y) = 0, Vy
lim, o Fxy(z,y) =0,Va

2. Right continuous in z: limy, o+ Fxy(z + h,y) = Fxy(z,y),Vy
Right continuous in y: limy .o+ Fxy(z,y +h) = Fxy(z,y),Vz

3. Monotonicity in z: 21 <22 = Fyy(z1,y) < Fxy(x2,9),Vy
Monotonicity in y: y1 < y2 = Fxy(x,y1) < Fxy(x,42), Vo
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Recovering the marginal CDFs

Recall that when we write P(X < z) we mean P({w € Q: X(w) < z})

® Soasx — oo, we have P(X < o0) =P{w e N: X(w) <oo})=P(Q) =1

For example, the marginal CDF of X is

Fx(x) = lim Fxy(z,y)
y_>OO

Similarly, the marginal CDF of Y is

Fy(y) = Jim. Fxy(z,y)
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A simple example

® We are interested in the probability that X, Y take values in a (Borel) subset B of R?
® The simplest case is when B is a rectangle B = (x1, z2] X (y1,y2]

Y

Y2 i----

Y1 |----

How do we compute P(X € (z1,22],Y € (y1,y2])?

P(X € (z1,22],Y € (y1,42]) = Fxy(z2,92) — Fxy(z1,9%2) — Fxy(z2,y1) + Fxy(z1,y1)
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Bivariate PMF
® When both X and Y are discrete, we can define the joint PMF as

Ixy(z,y) =P(X =2,Y =y)

® We can thus recover the CDF as
Fxy(.y)= Y, fxy(@.y)
z' <wy' <y
® How can we recover the marginal PMFs?
X\Y | 1| w2 | s

1 ‘ P11 ‘ P12 ‘ P13
T2 ‘ Pp21 ‘ P22 ‘ b23

* fx(@) =2, fxy(z,y) and fy(y) =3, fxy(z,y)
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Bivariate PDF

® Suppose both X and Y are jointly-continuous,

® The PDF is an integrable function fxy : R? — R such that

Fxy(z,y) = / / Fxy (u, v)dudy

e With the following properties:
1. fxy(z,y) >0 forall (z,y) € R?

2. f_ f fxy(z,y)dedy =1

3. For any Borel set B C R? P((X,Y) € B) = [ [ fx,y(z,y)dzdy
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Recovering the marginal PDFs

® The marginal PDFs are defined as
fx(z) :/ fxy (@, y)dy
e Similarly,

fr(y) = /_OO fxy(z,y)dx

® Question: Say we know fx(z) and fy(y), can we recover fx y(z,y)?

® Not in general, only if X and Y are independent
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Joint Moments

® Let g : R? = R be a well-behaved function and X, Y two random variables:

Doz Dy 9($ ) fxy(z,y), discrete case,
2502 g(@,y) fxy(z,y) dedy, continuous.

Elg(X,Y)] = {

Like in the univariate case, we will use the common notation:

[9(X,Y)] = / h / " oo y)dFxy (ey)

We call the joint moments of X, Y the expectations of X™Y™ for m,n € N

And the joint central moments are defined as E[(X — E[X])"(Y — E[Y])"]

Example: the covariance is E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]|E[Y]
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Covariance Properties

® Symmetry:
Cov(X,Y) = Cov(Y, X)

¢ Bilinearity:
Cov(Xi + X»,Y) = Cov(X1,Y) + Cov(X2,Y)
and Cov(aX,Y) = aCov(X,Y)
® Variance:
Cov(X, X) = Var(X)
and Var[X + Y] = Var(X) + Var(Y) + 2Cov(X,Y)

¢ Independence: If X and Y are independent, then
Cov(X,Y)=0
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Correlation

® The correlation between two random variables X and Y is defined as

Cov(X,Y)

Cor(X,Y) = Var(X)Var(Y)

® For rvs. X,Y with finite second moments, we have —1 < Corr(X,Y) <1

e With |Corr(X,Y)| =1iff Y =aX + b for some a,b € R
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Proof
® Define Z =Y —aX, then
0 < Var(Z) = Var(Y — aX) = Var(Y) + a*Var(X) — 2aCov(X,Y)
= h(a)
® Since h(a) > 0 for all a, it has at most one root
® That is
0 >4Cov(X,Y)? — 4Var(X)Var(Y) = 4 [Cov(X,Y)? — Var(X)Var(Y)]
= Cov(X,Y)? < Var(X)Var(Y)
2
Cov(X,Y) <1
Var(X)Var(Y)
< |Corr(X,Y)| <1

® Finally, note that Var(Z) =0 when Y =aX +b
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Multivariate Generalization (1/2)

For n random variables X1, ..., X,,, we have analogous definitions:
1. The joint CDF is a function F, . x, : R®™ — [0,1] such that

FX1,...,Xn(x].) cee axn) = P(Xl S Tlyen- 7XTL S x’n)7
2. The marginal CDFs are, for any j = 1,...,n, the functions

FXj(ajj) = Fx, . x,(00,...,00,2,00,...,00);
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Multivariate Generalization (2/2)

3. The marginal PMF or PDF are, for any j = 1,...,n, the functions

S ijil ExjH e X X0 (T, ), discrete case,

S 2 fxxa (@, an) doy Lo daj_idajy .. day,,  continuous;

4. If g is a well-behaved function g : R" — R, then

Z$1 . an g(:ph ... 7$n)fX1,...,Xn (1‘1, ey J,‘n), discrete,
foo .. ffooo g(x1, ..., xn) fxy,. x, (@1, ..., Ty) dzy ... dxy, continuc

—00

Elg(X1,...,Xn)] = {
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Joint MGFs

® The joint MGF of two random variables X, Y is defined as
Mij(tl, tg) = E[€t1X+t2Y]

® We can Taylor expand the exponential function to recover the moments of X, Y

m 4n
MXY tl,tz ZZ;' 2 xmyn
m=0n=0
tm n
S MILLIEY
m=0n= Om
e Can recover the m, n-th moments of X,Y as %hl:tzzo
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Independence of two random variables

® Two random variables X, Y are independent iff the events {X < z} and {Y <y} are
mutually independent for all z, y:

Fxy(w,y) = Fx(x)Fy(y),Vz,y

e Equivalently, iff
fX,Y(xay) = fX(x)fY(y)avxay

® The random variables X1, ..., X,, are mutually independent iff the events
{X1 <z:},...,{X, <z,} are independent for all z1,...,z,:
Fx, . x,(x1,...,2n) = Fx,(x1) ... Fx, (zn)

® Equivalently, iff
Ixi o x, (@1, xn) = fxy (1) - fx, ()
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Moments and Independence

® A motivating example:
EWWZ/ / ryfx,y(z,y)dzdy
[ ] surc@)ssdy

:([mm&umﬁ<[2www@>=MMMﬂ

® In general, if a function g(z,y) = h(x)k(y) then for X, Y independent:

Elg(X,Y)] = E[L(X)]E[K(Y)]

e If X,Y are independent, then Mx y (t1,t2) = Mx (t1)My(t2)
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Sum of two random variables
® Let X and Y be two random variables with joint density fxy(z,y)
o let /=X+Y

® Then:
£2(2) ffx, fxy(z,z —x)dx, continuous case,
Z) =
Yoo fxy(z, z—x), discrete case.

® Proof: (discrete case): Define Z =X +Y:

(Z=2}={X+Y=z}=J{X=uY =2-u}
f2(2)=P(Z=2)=) PX=uY =z—u)

Transformations
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Convolution

e If X and Y are independent, then fxy(z,y) = fx(z)fy(y) and

fz(z) = {ffooo fx(z)fy(z —x)dx, continuous case,

Yoo fx (@) fy(z —x), discrete case.
® This operation is called convolution and we denote it as fz = fx * fy

® |n the case of n independent random variables and S = X7 + - -- + X,,, we have

fs=Ffxy** fx,
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Example: Sum of two Exponentials
® Let X ~ Exp(A) and Y ~ Exp(u) be two independent exponential random variables
® The PDF of X is fx(z) = Ae™* and the PDF of Y is fy(y) = pue ¥

® The PDFof Z=X+Y is
f2(z) = / fx (@) fy (z — 2)da
= / e M et E) gy

0
= Alue_p“z /Z e—(>\+ﬂ)$d$
0

_ )\Yue—uz (1 _ e—(>\+u)2>
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Random Vector — Definition and Notation
Random vector: An n-dimensional vector of random variables, i.e., a function
X =(Xy,....X,)T: Q=R
The CDF, PMF or PDF, and MGF of a random vector are the joint CDF, PMF or PDF, and
MGF of X1,..., X, so for any @ = (x1,...,2p),t = (t1,...,t,) € R™
Fx(x)=Fx,,. x,(T1,...,Zn),

fx(x) = le,...,Xn(xl, ceeyTp),
Mx(t) = Mx, . x,(t1,. .. tn).

Expectation of a random vector: The expectation of a random vector is a vector of the
expectations, i.e., it is taken element by element:

E[X]
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Random Matrix

® Similarly, a random matrix is a matrix whose entries are random variables:

W11 e Wln

W = ; . ;

Wit .. Won

e With joint CDF, PMF or PDF, and MGF defined as the joint CDF, PMF or PDF, and
MGF of the entries

® The expectation of a random matrix is a matrix of the expectations of the entries
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Variance of a Random Vector

® The variance-covariance matrix of an n x 1 random vector X is the n X n matrix;

Var[X] = E[(X — E[X])(X —E[X])"]

Var[Xl] COV[Xl,XQ] . COV[Xl,Xn]
COV[XQ,Xl] Var[Xg] PN COV[XQ,Xn]
Var[ X] = . , _ :
Cov[X,, X;i] Cov[X,,Xo] ... Var[X,]

® Question: What Var[X] if X is independent and identically distributed (i.i.d.)? o?1,
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The Variance-Covariance Matrix is PSD

® The variance-covariance matrix is positive semi-definite (PSD)
® For any vector a € R", we have: a’Var[X]a >0
® Proof: Let X be a random vector and a € R™. Then

Varla’ X] =E [(a” X — E[a” X])(a” X — E[a” X))"]
=E [(a"(X - E[X]))(X - E[X])"a]
= a’Var[X]a >0
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Motivation for Conditional Distributions

® Suppose we have two random varianles X and Y and we know their joint distribution
fX,Y (‘Ta y)
® Suppose we know that X = z, what can we say about Y7

® We now how to compute conditional probabilities:

P(AN B)

PAIB) = —5 5

® |Intuitively, for discrete RVs we can use {X = z} and {Y = y} and apply the same
formula
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Conditional PMF
® Let X and Y be two discrete random variables with joint PMF fx y(z,y)
® The conditional PMF of Y given X = z is defined as

fyix(ylz) = @)

® |s this a valid PMF?

o Ixy(y) 1 o) =
Zy:fYIX(yl’) = Zy: @ fx@) Xy:fx,Y( y) =1

® We can only condition on X = z if fx(z) > 0, that is if x is in the support of X
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Conditional PDF

® Let X and Y be two continuous random variables with joint PDF fx y(z,y)
® The conditional PDF of Y given X = z is defined as

fyix(ylz) = ij;((z,)y)

® |s this a valid PDF?

x o feyley) 1
/_oof”(y'x’dy‘ @ YT @

® We can only condition on X = z if fx(z) > 0, that is if x is in the support of X

/_ " fxy(ey)dy = 1
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Conditional CDF

® The conditional CDF of Y given X = z is defined as

doy<y fyix('|z), discrete case,

F =PY <ylX =2)=
Y\X(y|x) (Y <y ) {figoo fy\X@/’w)dy/v continuous.

20/39



Example: Hurricanes reaching land

® We are interested in modelling the number of hurricanes reaching land in a given year Y

® Suppose that we know that number of hurricanes N ~ Poisson()\): fn(n) = 672!’\71
® And that each hurricane has a probability p of reaching land Y|N = n ~ Binomial(n, p)
[ ]

One can show that Y ~ Poisson(\p)

® You can prove this directly using the definition of conditional PMF

We will instead use this to illustrate conditional expectations
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Conditional Expectation

® We have seen that Y| X = x is a perfectly valid random variable
® \We can thus define the conditional expectation of Y given X = z as

E[Y[X = o] = {Zy yfyx (ylr), discrete case,

ffooo yfy|x (y|z)dy, continuous.

® Define the function g(x) = E[Y|X = z], then the conditional expectation of Y given
Xis

E[Y|X]

® That is, E[Y|X] is a random variable that depends on X
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Law of Iterated Expectations

® The law of iterated expectations states that for any two random variables X and Y:
E[Y] = E[E[Y]X]]

® Proof:

[ swix —aaree) = [ ([ wirvxtle)) arse)

= / / ydFx y(x,y)
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Example: Hurricanes reaching land

® We have seen that Y ~ Poisson(Ap)

® \We can compute the conditional expectation of Y given N = n as
E[Y|N =n]=mnp

® And the law of iterated expectations gives us

E[Y] = E[E[Y|N]] = E[Np] = Ap
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LOTUS for Conditional Expectations

® g:R%2 - Ris a well-behaved real function

Then, the conditional expectation of ¢(Y, X) given X =z is

o0

Elg(Y, X)|X = 2] = / 9(y, 2)dFy x (]2)

—0o0

And the conditional expectation of g(Y, X) given X is

Elg(Y, X)|X]

Example (Taking out what is known): E[XY|X] = XE[Y|X]
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Conditional Moments
® The r-th conditional moments of Y given X = x are defined as

[e.o]

y"dFy x(y|r)

E[Y|X = o] = /

® And the r-th conditional central moments of Y given X = x are defined as

E[(Y —E[Y[X = z])"|X = 2] = /Z(y —E[Y|X = z])"dFy|x (y|z)
® Similarly as before, we can define the r-th conditional moments of Y given X as
E[Y"|X]
and the r-th conditional central moments of Y given X as

E[(Y - E[Y|X])"|X]
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Law of Iterated Variances
® We showed that we can recover the expectation of Y as E[Y] = E[E[Y|X]]

® For the variance, we have a similar result:

Var[Y] = E[Var[Y|X]] + Var[E[Y | X]]

® Proof:
Var[Y] = E[Y?] — E[Y]?
= E[E[Y?|X]] - E[E[Y|X])?
= E[Var[Y'|X]] + [ [Y|X)?] - E[E[Y]X]]?
E[Var[Y'|X]] + Var[E[Y'| X]]

® Hurricane, X ~ Poisson(\)
® Y|X =z ~ Binomial(z,p), X ~ Poisson(\)
* E[Y|X =] =axp, Var[Y|X = z] =2ap(1 —p)
* E[Y] =E[E[Y|X]] = E[Xp] = Ap

® Var[Y] = E|Var[Y|X]] + Var[E[Y| X]] = E[Xp(1 — p)] + Var[Ap] = Ap(1 —p) + Ap = \p
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Conditional MGFs

® The conditional MGF of Y given X = x is defined as
My x (tle) = E[e” | X = a]
® \We can recover the moments of Y given X =z as

" My x (t|z)

—0=E[Y"X =
o = E[Y"[X =4

® Note that
My (t) = E[Myx (t|X)]
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Conditional MGFs in the Hurricane Example

My |n(t|N = n) = (1 — p + pet)", Mx(t) = M1

Then My (t) = E[Myy(t|N)] = E[(1 — p + pe")N] = E[N log(1 — p + pe')]

® We can compute this using the MGF of N: My (t) = e*(¢'~1)

This is the MGF of a Poisson distribution with parameter \p
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Conditioning for random vectors

® et X,Y be two random vectors

® \We can define the conditional distribution of Y given X = x as

fyix(ylz) = fx];;((ii,)y)

® And the expectation of Y given X = x as
E[Y1|X = x|
E[Y|X = a] - 5
E[Y,|X = z]
® The conditional expectation of Y given X is
E[Y1|X]
ElY|X] = :
E[Yn|X]
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Transformation of Continuous Random Variables (1/2)

We are interested in transforming one pair of random variables into another pair of random
variables.

® Consider pairs of random variables (U, V') and (X,Y).

® Suppose that X and Y are both functions of U and V:

ngl(U,V), YZQQ(U,V).

® Suppose g is well-behaved and invertible.
® \We use the inverse transformation:

U=m(X,Y), V=h(X,Y).
® The overall transformation is g, so (X,Y) = ¢g(U, V), and the inverse is h, so
(U,V)=g"4X,Y) =h(X,Y).
® Then, if (U, V) are continuous random variables with support D, and (X,Y) = g(U,V),
the joint density of X and Y is

fuv(h(z,y)) [In(z,y)| for (z,y) € R,
0 otherwise.

Ixy(z,y) = {
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Transformation of Continuous Random Variables (2/2)
This is referred to as the change-of-variables formula.

® The Jacobian of the inverse transformation, Jy,(z,y), is given by:

Jh(x7y) = 8&
® This simplifies to:

0 0 0 0
Jh(l’,y) = 7h1($,y)7h2($,y) - h2($7y)ayhl(m7y)

ox oy oz
® The Jacobian can be expressed in terms of the Jacobian of the original transformation J:
9 9
Tyl vy = | 0 gpoal )
091 (u,v) mgz(uv v)
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Proof in the Continuous Case

lLet Z=X+Y, U=Xor X=U,Y=2-U

X _ 1 80X _ 9Y _ 1 9Y _
hencvel,a—ZfO,Wf 1, 57 =1

The Jacobian of the inverse transformation is:

_O0x 0y 0xdy

Y% %Y
n(@,y) Oudv Ovou

The joint density of U, Z is
foz(u,z) = fxy(u,z —u) x 1= fxy(u,z—u)

Then, the density of Z = X + Y is

fz(z) = /_ fxy(u,z —u)du
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