
Lecture 5: Sampling and Large-Sample Distribution Theory
PhD Mathematics II: Probability

Juan Llavador Peralt

IIES

November 12, 2024

1 / 33



Outline

Sampling and Sampling Distributions
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2 / 33



Sample

• Let X1, X2, . . . , Xn be a collection of independent and identically distributed RVs

• X1 ∼ fX(x|θ), where θ is a parameter vector (in the Gaussian case, θ = (µ, σ2))

• Then X1, X2, . . . , Xn is a random sample of size n from the distribution fX(x|θ)

• A realization of the sample is x1, x2, . . . , xn

• The joint density of the sample is:

fX1,X2,...,Xn(x1, x2, . . . , xn|θ) =
n∏

i=1

fX1(xi|θ)
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Statistics

• Let X1, X2, . . . , Xn be random sample

• A statistic is a function of the sample:

T = g(X1, X2, . . . , Xn)

• It does not depend on the parameter θ

• Examples:
• Sample mean: X̄ = 1

n

∑n
i=1 Xi

• Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X̄)2

• Minimum: X(1) = min{X1, X2, . . . , Xn}
• Maximum: X(n) = max{X1, X2, . . . , Xn}

• Question: Is 1
n

∑n
i=1(Xi − E[Xi])

2 a statistic?
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The Sample Mean

• The sample mean is a statistic: X̄ = 1
n

∑n
i=1Xi and hence a RV

• What is the expectation of the sample mean?

E[X̄] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n
· nE[X1] = E[X1]

• What is the variance of the sample mean?

Var[X̄] =
1

n2

n∑
i=1

Var(Xi) =
1

n
Var(X1)
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The Sample Variance
• The sample variance is a statistic: S2 = 1

n−1

∑n
i=1(Xi − X̄)2 and hence a RV

• What is the expectation of the sample variance?

• First, note that we can rewrite S2 as:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1

(
n∑

i=1

X2
i − nX̄2

)

• Note that E[X2
i ] = Var(Xi) + E[Xi]

2

• And E[X̄2] = Var(X̄) + E[X̄]2 = Var(X1)/n+ E[X1]
2

• So we have:

E[S2] =
1

n− 1

(
n(Var(X1) + E[X1]

2)− n(Var(X1)/n+ E[X1]
2)
)
= Var(X1)
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Markov’s Inequality
• Let X be a non-negative RV with finite expectation E[X] < ∞
• Then, for any a > 0, we have:

P(X ≥ a) ≤ E[X]

a

• Proof (for X continuous):

P(X ≥ a) =

∫ ∞

a
fX(x)d(x)

≤
∫ ∞

a

x

a
fX(x)d(x)

=
1

a

∫ ∞

a
xfX(x)d(x)

≤ 1

a
E[X]

7 / 33



Chebychev’s Inequality

• Let X be a RV with finite mean µ and variance σ2

• Then, for any k > 0, we have:

P(|X − µ| ≥ σk) ≤ 1

k2

• Proof:

P(|X − µ| ≥ σk) = P((X − µ)2 ≥ σ2k2)

≤ E[(X − µ)2]

σ2k2

=
1

k2
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Convergence for Random Variables
Consider a sequence of N (0, 1/n)
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Convergence in Probability

• Let X1, X2, . . . be a sequence of RVs and X be another RV

• We say that Xn converges in probability to X if:

lim
n→∞

P(|Xn −X| ≥ ϵ) = 0, ∀ϵ > 0

• We write: Xn
p−→ X or plimXn = X

• Note that it is equivalent to:

lim
n→∞

P(|Xn −X| < ϵ) = 1, ∀ϵ > 0

• Often X = µ ∈ R is a constant

• Used to establish the consistency of an estimator (more of this in Econometrics I)
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Weak Law of Large Numbers

• Let X1, X2, . . . be a sequence of i.i.d. RVs with E[X1] = µ and Var[X1] = σ2 < ∞

• Let Sn/n = 1
n

∑n
i=1Xi

• Then, Sn/n
p−→ µ

• Proof:

P(|Sn/n− µ| ≥ ϵ) = P
(
|Sn − nµ| ≥ ϵ

σ√
n

√
n

σ

)
≤ σ2

nϵ2
→ 0, as n → ∞
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Convergence Almost Surely

• Let X1, X2, . . . be a sequence of RVs and X be another RV

• We say that Xn converges almost surely to X if:

P({ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}) = 1

• We write:
Xn

a.s.−−→ X

• Resembles pointwise convergence of functions
• In analysis, fn(x) → f(x) pointwise if limn→∞ fn(x) = f(x) for all x
• Here, limn→∞ Xn(ω) = X(ω) for all ω except for those with measure zero
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Strong Law of Large Numbers

• Let X1, X2, . . . be a sequence of i.i.d. RVs with E[X1] = µ < ∞

• Let Sn =
∑n

i=1Xi

• Then,
Sn/n

a.s.−−→ µ

• That is
P({ω : lim

n→∞
Sn(ω)/n = µ}) = 1

• Intutively, SLLN suggest X̄n, X̄n+1, . . . will be simulatenously close to µ

• WLLN suggests that each X̄n will be close to µ
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Convergence in Mean-Square

• Let X1, X2, . . . be a sequence of RVs and X be another RV

• We say that Xn converges in mean-square to X if:

lim
n→∞

E[(Xn −X)2] = 0

• We write:
Xn

m.s.−−→ X
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Convergence in Distribution

• Let X1, X2, . . . be a sequence of RVs and X be another RV

• We say that Xn converges in distribution to X if:

lim
n→∞

FXn(x) = FX(x), for all x where FX(x) is continuous

• We write:
Xn

d−→ X

• Used to establish the asymptotic normality of an estimator (more of this in
Econometrics I)
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Convergence of Moment Generating Functions

• Let X1, X2, . . . be a sequence of RVs and X be another RV

• Let MXn(t) and MX(t) be the MGFs of Xn and X, respectively

• We say that Xn converges in distribution to X if:

lim
n→∞

MXn(t) = MX(t), for all t in a neighborhood of zero

• Sometimes called "Levy’s Continuity Theorem"

• This is the case in which the MGF exists, but this extends to characteristic functions too
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Central Limit Theorem (Lindeberg-Levy)

• Let X1, X2, . . . be a sequence of i.i.d. RVs with E[X1] = µ and Var[X1] = σ2 < ∞

• Let Sn =
∑n

i=1Xi

• Then, the distribution of the standardized sum converges to the standard normal
distribution:

√
n
Sn/n− µ

σ

d−→ Z ∼ N (0, 1)

• Proof: Use the characteristic function
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Proof when the MGF exists 1/2

• Consider the MGF of the standard normal: MZ(t) = exp
(
t2

2

)
• We will show that M√

n
Sn/n−µ

σ

(t) → MZ(t)

• Define Yi =
Xi−µ

σ , then
√
nSn/n−µ

σ = 1√
n

∑n
i=1 Yi

• Since Xi are i.i.d., Yi are i.i.d. with E[Yi] = 0 and Var[Yi] = 1

• The MGF of Sn−nµ
σ
√
n

is:

MSn−nµ
σ
√
n

(t) =

[
MY1

(
t√
n

)]n
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Proof when the MGF exists 2/2
• Taylor expand the MGF of Y1 around 0:

MY1

(
t√
n

)
=

∞∑
k=0

1

k!

(
t√
n

)k

E[Y k
1 ]

• Note that E[Y1] = 0 and E[Y 2
1 ] = 1

Then

MYi(t) = 1 +
1

2

(
t√
n

)2

+ o

[(
t√
n

)2
]

• Where o(t2/n) means that limn→∞
o(t2/n)
(t2/n)

= 0

• Then,

MSn−nµ
σ
√
n

(t) =

[
1 +

1

n

(
1

2
t2 + no

[(
t√
n

)2
])]n

→ exp

(
t2

2

)
, as n → ∞
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Aside: Multivariate Gaussian Distribution

• Let X1, X2, . . . , Xn be random variables and X = (X1, X2, . . . , Xn)
T a random vector

• E[X] = µ is an n× 1 vector and Var[X] = Σ is an n× n matrix

• We say that X follows a multivariate Gaussian distribution X ∼ N (µ,Σ) if:

fX(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
• We say that X1, X2, . . . , Xn are jointly Gaussian
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Aside: Joint Normality and Independence

• Normally and independent distributed RVs are jointly Gaussian

• The converse is not true: jointly Gaussian does not imply independence

• In general, uncorrelated RVs are not independent

• However, if X1, X2, . . . , Xn are jointly Gaussian and uncorrelated, then they are
independent

• This does not hold if the RVs are not jointly Gaussian
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Multivariate CLT

• Let X1,X2, . . . be a sequence of k-dimensional i.i.d. RVs

• With E[X1] = µ and Var[X1] = Σ is symmetric and positive definite

• Define the random vector Zi = Σ−1/2(Xi − µ)

• Then:
1√
n

n∑
i=1

Zi
d−→ N (0, Ik)
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On the assumptions of the CLT

• We have assumed that Xi are i.i.d. with finite mean and variance

• Lyapunov’s and Lindeberg-Feller CLT relax the identically distributed assumption

• Can also be extended to some cases with dependent RVs

• There is also a generalized CLT for the case with infinite variance (but it does not
converge to a normal distribution)
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Relationship Between Modes of Convergence

• Almost sure convergence implies convergence in probability:

Xn
a.s.−−→ X ⇒ Xn

p−→ X

• Convergence in mean-square implies convergence in probability:

Xn
m.s.−−→ X ⇒ Xn

p−→ X

• Convergence in probability implies convergence in distribution:

Xn
p−→ X ⇒ Xn

d−→ X

• When X is a constant, convergence in distribution implies convergence in probability:

Xn
d−→ µ ⇒ Xn

p−→ µ
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Convergence in Mean-Square implies Convergence in Probability

• Let Xn
m.s.−−→ X

• Then using Markov inequality:

P(|Xn −X| ≥ ϵ) ≤ E[(Xn −X)2]

ϵ2
→ 0, as n → ∞
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Main Convergence Theorem

• Suppose that Xn converges to X in a certain mode

• Question: What can we say about g(Xn)?

• Suppose X1, X2, . . . is a sequence of random vectors Rk and g : Rk → Rs is a
continuous function

• Then:

Xn
a.s.−−→ X ⇒ g(Xn)

a.s.−−→ g(X)

Xn
p−→ X ⇒ g(Xn)

p−→ g(X)

Xn
d−→ X ⇒ g(Xn)

d−→ g(X)
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Slutsky-Cramer’s Convergence Theorem

• For Xn
d−→ X and Yn

p−→ c, we have:

Xn + Yn
d−→ X + c

XnYn
d−→ Xc

Xn/Yn
d−→ X/c, if c ̸= 0

• Cramer-Wold Theorem: If Xn
d−→ X, then for any a ∈ Rk, a′Xn

d−→ a′X
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Algebra of Probability Limits
• For a continuous function g(x) : Rk → Rs and suppose that plimXn exists:

plimg(Xn) = g(plimXn)

• Some direct implications:
• If plimXn = µ and plimYn = ν, then:

plim(Xn + Yn) = µ+ ν

plim(XnYn) = µν

plim(Xn/Yn) = µ/ν,

• If Wn is an invertible matrix and plimWn = Ω, then:

plim(W−1
n ) = Ω−1, if Ω is invertible

• If Xn, Yn are random matrices and plimXn = A and plimYn = B, then:

plim(XnYn) = AB

• If the plim is a constant, then g only needs to be continuous at that point
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Delta Method

• Let Xn be a sequence of RVs with

Xn
p−→ X

√
n(Xn −X)

d−→ N (0, σ2)

• Let g : R → R be a function such that g′(X) ̸= 0

• Then: √
n(g(Xn)− g(X))

d−→ N (0, σ2[g′(X)]2)

• To see where this comes from, consider the Taylor expansion of g(Xn):

g(Xn) = g(X) + g′(X)(Xn −X) + op(|Xn −X|)
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Delta Method in a Multivariate Case

• Let Xn ∈ Rk be a sequence of RVs with

Xn
d−→ X

√
n(Xn −X)

d−→ N (0,Σ)

• Let g : Rk → R be a function such that the Jacobian matrix Dg(X) is non-singular

• Then: √
n(g(Xn)− g(X))

d−→ N (0, Dg(X)ΣDg(X)T )

• Where Dg(X) is the Jacobian matrix of g evaluated at X
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Example: Ratio of two means

• Suppose we have two random samples X1, X2, . . . , Xn and Y1, Y2, . . . , Yn

• Assume
(

X̄
Ȳ

)
p−→
(

µX

µY

)
, with µY ̸= 0

• And
√
n

(
X̄
Ȳ

− µX

µY

)
d−→ N

(
0
0
,Σ

)
• Then, by the Delta Method:

√
n

(
X̄

Ȳ
− µX

µY

)
d−→ N

(
0,
(
1/µY −µX/µ2

Y

)
Σ

(
1/µY

−µX/µ2
Y

))
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Important Distributions for Inference

Chi-Squared Distribution
• Let Z1, Z2, . . . , Zn ∼ N (0, 1) be i.i.d. RVs
• Then, X =

∑n
i=1 Z

2
i ∼ χ2(n) (chi-squared with n degrees of freedom)

Student’s t-Distribution
• Let Z ∼ N (0, 1) and X ∼ χ2(n) be independent RVs
• Then, X = Z√

X/n
∼ t(n) (Student’s t with n degrees of freedom)

• As n → ∞, t(n) d−→ N (0, 1)

F-Distribution
• Let X ∼ χ2(n) and Y ∼ χ2(m) be independent RVs

• Then, X = X/n
Y/m ∼ F (n,m) (F-distribution with n,m degrees of freedom)
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Example: Chi-Squared Distribution

• Xn
d−→ X ∼ N (0, 1) =⇒ X2

n
d−→ X2 ∼ χ2(1)

• Xn
d−→ N (0,Σ) =⇒ XT

nXn
d−→ χ2(k) where k is the number of elements in Xn

• √
n
(
X̄ − µ

) d−→ N (0, σ2) =⇒
(√

n(X̄−µ)
σ

)2
d−→ χ2(1)

• √
n
(
X̄− µ

) d−→ N (0,Σ) =⇒
(√

n
(
X̄− µ

))T
Σ−1

(√
n
(
X̄− µ

)) d−→ χ2(k)
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