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Sample

Let X1, Xo,..., X, be a collection of independent and identically distributed RVs

X1 ~ fx(x|0), where 6 is a parameter vector (in the Gaussian case, = (u,0?))

Then X1, Xo,..., X, is a random sample of size n from the distribution fx (x|6)

A realization of the sample is =1, z2,..., 7,

The joint density of the sample is:

Fx1 Koo (@1, 2, 2n]0) = [ [ Fx, (2:]0)
i1
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Statistics

® Let X1, Xo,...,X,, be random sample

A statistic is a function of the sample:

T=g(X1,Xo,...

It does not depend on the parameter 6

® Examples:
® Sample mean: X = 15" X
® Sample variance: §? = L. 3" (X, — X)?

® Minimum: X(;) = min{X1, Xo,..., X,,}
® Maximum: X(,,) = max{Xy, Xo,..., X}

Question: 1s 25" (X; — E[X;])? a statistic?

n
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The Sample Mean

® The sample mean is a statistic: X = %Z?Zl X, and hence a RV

® What is the expectation of the sample mean?

n

TllZ)Q] = %ZE[XJ = % -nE[X1] = E[X]
i=1 i=1

E[X]=E

® What is the variance of the sample mean?

_ 1 — 1
Var[X] = — > Var(X;) = ~Var(X1)
=1

n= <
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The Sample Variance
The sample variance is a statistic: $> = - 3"" | (X; — X)? and hence a RV

What is the expectation of the sample variance?

First, note that we can rewrite S? as:

n

1 _ 1 n _
=1

i=1

Note that E[X?] = Var(X;) + E[X;]?

And E[X?] = Var(X) + E[X]? = Var(X1)/n + E[X;]?

So we have:
E[S?] = % (n(Var(X1) + E[X1]?) — n(Var(X1)/n + E[X1]?)) = Var(X1)

n —
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Markov's Inequality
® let X be a non-negative RV with finite expectation E[X]| < oo

® Then, for any a > 0, we have:

P(X >a) <

® Proof (for X continuous):
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Chebychev's Inequality

® Let X be a RV with finite mean x and variance o2

® Then, for any k£ > 0, we have:

1

P(X — il = k) <

® Proof:

P(|X — pul > ok) = P((X — p)* > 0%k?)
E[(X — p)?]
o2k?

k2
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Convergence for Random Variables
Consider a sequence of N'(0,1/n)

PDF of Normal Distribution with Variance 1/n

1.6 1 —_— 0%2=1/1
— 02=12
1.4 4 —_— 02=1/4
—_ 02=1/8
1.2 1 — 02=1/16
i
=
E 0.8 /\
0.6
/TN
0.4 4
0.2 1
0.0 1
-4 =2 0 2 4
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Convergence in Probability

® let X1, X5,... be a sequence of RVs and X be another RV

We say that X, converges in probability to X if:

lim P(|X,, — X|>¢€) =0, Ve>0

n—oo

We write: X,, & X or plimX, = X

Note that it is equivalent to:

lim P(|X,, - X|<e¢) =1, Ve>0
n—oo

Often X =y € R is a constant

Used to establish the consistency of an estimator (more of this in Econometrics 1)
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Weak Law of Large Numbers

Let X1, Xo,... be a sequence of i.i.d. RVs with E[X;] = u and Var[X;] = 0% < 0

Let Sn/’I’L = %Z?:l X;

Then, S, /n LN 1

® Proof:
(o2 n
P(|S,/n — | =€) =P (\sn np| > eﬁ[>
0_2
<—5—0, asn— o0
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Convergence Almost Surely

® Let X1, X5,... be a sequence of RVs and X be another RV
® We say that X, converges almost surely to X if:
P{weQ: lim X, (w) = X(w)}) =1
n—oo
® \We write:
Xn =5 X
® Resembles pointwise convergence of functions

® In analysis, f,(z) — f(z) pointwise if lim, o fr(z) = f(z) for all z
® Here, lim, 00 X, (w) = X (w) for all w except for those with measure zero
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Strong Law of Large Numbers

® Let X;, Xy,... be a sequence of i.i.d. RVs with E[X;] = u < 00

® et S, = Z?:l X;

® Then,
Sh/nlgﬁélﬁ
® That is
P{w: lim S,(w)/n=mu}) =1
n—oo
e Intutively, SLLN suggest X,,, X,,11, ... will be simulatenously close to x
® WLLN suggests that each X,, will be close to 1
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Convergence in Mean-Square

® let X1, Xo,... be a sequence of RVs and X be another RV
® \We say that X, converges in mean-square to X if:
lim E[(X, — X)) =0
n—oo

o \We write:
X, — X
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Convergence in Distribution

Let X1, Xo,... be a sequence of RVs and X be another RV

We say that X,, converges in distribution to X if:

lim Fx, (z) = Fx(x), forall z where Fx(z) is continuous
n—oo

® We write:
X, %5 x

Used to establish the asymptotic normality of an estimator (more of this in
Econometrics 1)
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Convergence of Moment Generating Functions

Let X1, X5, ... be a sequence of RVs and X be another RV

Let Mx, (t) and Mx(t) be the MGFs of X,, and X, respectively

We say that X, converges in distribution to X if:

lim Mx, (t) = Mx(t), foralltin a neighborhood of zero

n—o0

® Sometimes called "Levy's Continuity Theorem"

This is the case in which the MGF exists, but this extends to characteristic functions too
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Central Limit Theorem (Lindeberg-Levy)

Let X1, Xo,... be a sequence of i.i.d. RVs with E[X;] = u and Var[X;] = 0% < 0

Let S, = Z?:l X;

® Then, the distribution of the standardized sum converges to the standard normal
distribution: g
\/ﬁw LN N(0,1)
o
® Proof: Use the characteristic function

17/33



Proof when the MGF exists 1/2

® Consider the MGF of the standard normal: Mz(t) = exp (%)

We will show that M osn/n—u (t) = Mz(t)

o

Since X; are i.i.d., Y; are i.i.d. with E[Y;] =0 and Var[Y;] =1

The MGF of 5;;# is:

0= o ()]
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Proof when the MGF exists 2/2
® Taylor expand the MGF of Y7 around 0:

t 1t N

v (G5) - 2w (5) =

® Note that E[Y;] =0 and E[Y?] =1
Then

® Where o(t?/n) means that lim,, o((tt;/;)) =
® Then,
1 (1 t \?\1]" t?
Msyn (t) = |14 = | =#? —= B
oot o]

), as n — o0
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Aside: Multivariate Gaussian Distribution

Let X1, Xo,..., X, be random variables and X = (X1, X»,..., X,)? a random vector

e E[X] = pis an n x 1 vector and Var[X] = X is an n X n matrix

We say that X follows a multivariate Gaussian distribution X ~ N (p, X) if:

xl) = G o (50 w2 )

We say that X1, X», ..., X, are jointly Gaussian
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Aside: Joint Normality and Independence

Normally and independent distributed RVs are jointly Gaussian

The converse is not true: jointly Gaussian does not imply independence

In general, uncorrelated RVs are not independent

However, if X1, X5,..., X, are jointly Gaussian and uncorrelated, then they are
independent

This does not hold if the RVs are not jointly Gaussian

21/33



Multivariate CLT

Let X1, X0, ... be a sequence of k-dimensional i.i.d. RVs

With E[X;] = u and Var[X;] = 3 is symmetric and positive definite

Define the random vector Z; = Zfl/z(Xi — 1)

Then:
1 & d
— E Z; v}
\/ﬁizl —)N(O k)
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On the assumptions of the CLT

We have assumed that X; are i.i.d. with finite mean and variance

® Lyapunov’s and Lindeberg-Feller CLT relax the identically distributed assumption

Can also be extended to some cases with dependent RVs

There is also a generalized CLT for the case with infinite variance (but it does not
converge to a normal distribution)
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Relationship Between Modes of Convergence
® Almost sure convergence implies convergence in probability:
X, 2 X=X, B X
e Convergence in mean-square implies convergence in probability:
X, 2 X = X, B X
e Convergence in probability implies convergence in distribution:
X, 2 x=x,%Xx
® When X is a constant, convergence in distribution implies convergence in probability:

Xni>,u,:>Xng,u,
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Convergence in Mean-Square implies Convergence in Probability

o Let X, =2 X

® Then using Markov inequality:

E[(Xn — X)?]

P(|X, — X|>¢€) < 3

—0, asn— o0
€
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Main Convergence Theorem

® Suppose that X,, converges to X in a certain mode
® Question: What can we say about ¢g(X,,)?

® Suppose X1, Xo,... is a sequence of random vectors R* and ¢ : R* — R is a
continuous function

® Then:
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Slutsky-Cramer’s Convergence Theorem

® For X, 4 X and Y, & ¢, we have:

X, +Y, 5 X+
XY, % Xe
X /Y% X/e, ifc#0

® Cramer-Wold Theorem: If X, 4, X, then for any a € R¥, d’' X, 4 a0 x
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Algebra of Probability Limits

® For a continuous function g(z) : R¥ — R® and suppose that plimX,, exists:

plimg(X,,) = g(plimXy,)

® Some direct implications:
® If plimX,, = and plimY,, = v, then:

plim(X, +Y,)=p+v
plim(X,.Y,) = pv
plim(X,/Yn) = /v,
® |f W, is an invertible matrix and plimWW,, = Q, then:
plim(W, 1) = Q7' if Q is invertible
® If X,,,Y,, are random matrices and plimX,, = A and plimY,, = B, then:
plim(X,Y,) = AB

¢ |f the plim is a constant, then g only needs to be continuous at that point
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Delta Method

® |et X, be a sequence of RVs with
X, 5 X
VX, — X) 5 N0, 0?)
® Let g: R — R be a function such that ¢/(X) # 0

® Then:
Vi(g(Xa) — g(X)) S N(0,02¢' (X)]?)

® To see where this comes from, consider the Taylor expansion of g(X,,):

9(Xn) = 9(X) + ¢'(X) (X — X) + 0p(|Xn — X])
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Delta Method in a Multivariate Case

Let X,, € R* be a sequence of RVs with

X, % x
VX, — X) % N(0,5)

Let g : R¥ — R be a function such that the Jacobian matrix Dg(X) is non-singular

Then:
Vi(g(Xa) — g(X)) % N(0, Dg(X)EDg(X)")

Where Dg(X) is the Jacobian matrix of g evaluated at X
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Example: Ratio of two means

® Suppose we have two random samples X1, X5,..., X, and Y1,Y5,...,Y,

X p mx .
® Assume < v > - ( Ly >,Wlthuy§é0
X 175'¢ d 0
OAnd\/ﬁ<)—/—My>—>/\/<O,E)
® Then, by the Delta Method:

m(é‘f;)i/v@’(l/uy —ux/u%)2< A >>

—ux/u3
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Important Distributions for Inference

Chi-Squared Distribution

o Let Z1,Z,...,Zn ~N(0,1) be i.i.d. RVs

® Then, X =>"" | Z2 ~ x*(n) (chi-squared with n degrees of freedom)
Student’s t-Distribution

® Let Z~ N(0,1) and X ~ x%(n) be independent RVs

® Then, X = —Z t(n) (Student's t with n degrees of freedom)

e
® Asn — oo, t(n) i>./\f(071)
F-Distribution
® Let X ~ x%(n) and Y ~ x2(m) be independent RVs

® Then, X = 1)’(7/72 ~ F(n,m) (F-distribution with n, m degrees of freedom)
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Example: Chi-Squared Distribution

o X, 5 X ~N(0,1) = X294 X2~ y21)

e X, 5 N(0,%) = XTX, % y2(k) where k is the number of elements in X,,

o Vi (X—p) HN©O02) — (M>2$X2(1)

(e

© Vi (X—p) SNO,T) = (v (X—pm)" 271 (Vi (X = p) S x3(k)
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